

The following excerpt are pages from the North American Product Technical Guide, Volume 2: Anchor Fastening, Edition 21.

Please refer to the publication in its entirety for complete details on this product including data development, product specifications, general suitability, installation, corrosion and spacing and edge distance guidelines.

US&CA: https://submittals.us.hilti.com/PTGVol2/

To consult directly with a team member regarding our anchor fastening products, contact Hilti's team of technical support specialists between the hours of 7:00am – 6:00pm CST.

US: 877-749-6337 or <u>HNATechnicalServices@hilti.com</u>

CA: 1-800-363-4458, ext. 6 or CATechnicalServices@hilti.com

3.2.6

3.2.6 HVU2 CAPSULE ADHESIVE ANCHORING SYSTEM PRODUCT DESCRIPTION

Features and Benefits Mortar system Combines high performance, versatility, and convenience of nearly instant loading Hilti HVU2 adhesive HVU2 HVU2 capsule Rapid cure time — as soon as 5 minutes at room temperature Diamond core drilling applicable, even in cracked concrete and seismic applications Tough, resilient soft foil capsule — little Hilti HAS threaded risk of breakage rod with setting tip Suitable for tough jobsite conditions including water-saturated concrete and low installation temperature SafeSet™ automatic hole cleaning with Hilti hollow drill bit and Hilti vacuum for virtually dust free use and Hilti HIS-N and OSHA 1926.1153 Table 1 compliance HIS-RN internally threaded inserts Faster and more convenient installation with drill driver, impact driver, or hammer drill

Cracked concrete

Seismic Desing Categories A-F

Diamond core drilling permitted

Hollow Drill Bit

PROFIS Anchor design software

Listings/Approvals	
ICC-ES (International Code Council) - 2021 International Building Code / International Residential Code	ESR-4372 in concrete per ACI 318 Ch. 17 / ACI 355.4 / ICC-ES AC308
NSF/ANSI Std 61	Certification for use in potable water
European Technical Approval	ETA-18/0184, ETA-18/0185
City of Los Angeles	2020 LABC Supplement (within ESR-4372)
Florida Building Code	2020 FBC Supplement (within ESR-4372) w/ High Velocity Hurricane Zone
U.S. Green Building Council	LEED® Credit 4.1-Low Emitting Materials

DESIGN DATA IN CONCRETE PER ACI 318

ACI 318 Chapter 17 design

The load values contained in this section are Hilti Simplified Design Tables. The load tables in this section were developed using the Strength Design parameters and variables of ESR-4372 and the equations within ACI 318 Chapter 17. For a detailed explanation of the Hilti Simplified Design Tables, refer to section 3.1.8. Data tables from ESR-4372 are not contained in this section, but can be found at www.icc-es.org or at www.hilti.com.

Hilti HVU2 Adhesive Capsule with Hilti HAS Threaded Rod

Hilti HAS threaded rod with setting tip

Figure 1 — Hilti HAS threaded rod installation conditions

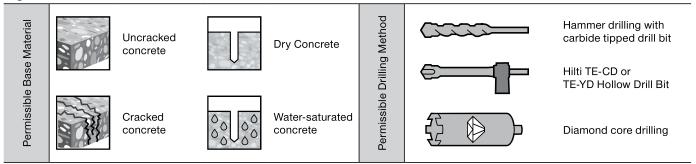
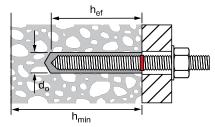



Table 1 — Hilti HAS threaded rod installation specifications 1

Catting information		Cumahaal	Llaita			Nomi	nal rod diamet	er (in.)		
Setting information		Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4 ²
		d _o	-	7/16"	9/16"	11/16"	7/8"	1"	1-1/8"	1-3/8"
Nominal bit diameter		d _o	-	12mm	9/16"	11/16"	7/8"	1"	1-1/8"	1-3/8"
	₹ > →	d _o	-	-	9/16"	11/16"	7/8"	1"	1-1/8"	1-3/8"
Effective embedment		h _{ef}	in. (mm)	3-1/2 (89)	4-1/4 (108)	5 (127)	6-5/8 (168)	6-5/8 (168)	8-1/4 (210)	11 (279)
Diameter of fixture hole		d _f	in.	7/16	9/16	11/16	13/16	15/16	1-1/8	1-3/8
Installation torque		T _{inst}	ft-lb (Nm)	15 (20)	30 (41)	60 (81)	100 (136)	125 (169)	150 (203)	200 (271)
Minimum concrete thick	kness	h _{min}	in. (mm)	4-3/4 (121)	5-1/2 (140)	6-3/8 (162)	8-3/8 (213)	8-5/8 (219)	10-1/2 (267)	13-3/4 (349)
Minimum edge distance)	C _{min}	in. (mm)	1-7/8 (48)	2-1/2 (64)	3-1/8 (79)	3-1/4 (95)	4-3/8 (111)	5 (127)	6-1/4 (159)
Minimum anchor spacir	ng	S _{min}	in. (mm)	1-7/8 (48)	2-1/2 (64)	3-1/8 (79)	3-1/4 (95)	4-3/8 (111)	5 (127)	6-1/4 (159)

¹ Material specifications for Hilti HAS threaded rods are listed in section 3.2.7.

Figure 2 — Hilti HAS threaded rods installed with Hilti HVU2 adhesive capsule

^{2 1-1/4-}in. diameter threaded rods to be installed in generally vertical down direction only.

Table 2 — Hilti HVU2 adhesive design strength with lesser of concrete or bond failure for threaded rod in uncracked concrete 1,2,3,4,5,6,7,8,9

Hammer drilling with carbide tipped drill bit, or Hilti TE-CD or TE-YD Hollow Drill Bit

			Tonsion	ΦΝ.			Choor	Φ\/	
Nominal	Effective		rension	— ФN _п			Shear		
anchor diameter in.	embedment in. (mm)	f' _c = 2500 psi (17.2 Mpa) lb (kN)	f' _c = 3000 psi (20.7 Mpa) lb (kN)	f' = 4000 psi (27.6 Mpa) lb (kN)	f' = 6000 psi (41.4 Mpa) lb (kN)	f' _c = 2500 psi (17.2 Mpa) lb (kN)	f' _c = 3000 psi (20.7 Mpa) lb (kN)	f' _c = 4000 psi (27.6 Mpa) lb (kN)	f' = 6000 psi (41.4 Mpa) lb (kN)
0.40	3-1/2	3,955	4,145	4,465	4,965	8,515	8,930	9,620	10,690
3/8	(89)	(17.6)	(18.4)	(19.9)	(22.1)	(37.9)	(39.7)	(42.8)	(47.6)
1/0	4-1/4	6,835	7,485	8,645	10,585	14,720	16,125	18,620	22,805
1/2	(108)	(30.4)	(33.3)	(38.5)	(47.1)	(65.5)	(71.7)	(82.8)	(101.4)
F /0	5	8,720	9,555	11,030	13,510	18,785	20,575	23,760	29,100
5/8	(127)	(38.8)	(42.5)	(49.1)	(60.1)	(83.6)	(91.5)	(105.7)	(129.4)
3/4	6-5/8	13,300	14,570	16,825	20,605	28,650	31,380	36,235	44,380
3/4	(168)	(59.2)	(64.8)	(74.8)	(91.7)	(127.4)	(139.6)	(161.2)	(197.4)
7/8	6-5/8	13,300	14,570	16,825	20,605	28,650	31,380	36,235	44,380
1/6	(168)	(59.2)	(64.8)	(74.8)	(91.7)	(127.4)	(139.6)	(161.2)	(197.4)
-1	8-1/4	18,485	20,245	23,380	28,635	39,810	43,610	50,355	61,675
	(210)	(82.2)	(90.1)	(104.0)	(127.4)	(177.1)	(194.0)	(224.0)	(274.3)
1-1/4 (10)	11	28,455	31,175	35,995	44,085	61,290	67,140	77,530	94,950
1-1/4 (/	(279)	(126.6)	(138.7)	(160.1)	(196.1)	(272.6)	(298.7)	(344.9)	(422.4)

Table 3 — Hilti HVU2 adhesive design strength with lesser of concrete or bond failure for threaded rod in cracked concrete 1,2,3,4,5,6,7,8,9,11

Hammer drilling with carbide tipped drill bit, or Hilti TE-CD or TE-YD Hollow Drill Bit

Nominal	F###:		Tension	ı — ФN _п			Shear	— ФV _п	
anchor diameter in.	Effective embedment in. (mm)	f' _c = 2500 psi (17.2 Mpa) Ib (kN)	f'_c = 3000 psi (20.7 Mpa) lb (kN)	f' _c = 4000 psi (27.6 Mpa) Ib (kN)	f' _c = 6000 psi (41.4 Mpa) Ib (kN)	f' _c = 2500 psi (17.2 Mpa) Ib (kN)	f' _c = 3000 psi (20.7 Mpa) Ib (kN)	f' _c = 4000 psi (27.6 Mpa) Ib (kN)	f' _c = 6000 psi (41.4 Mpa) lb (kN)
1 /0	4-1/4	4,580	4,695	4,890	5,175	9,860	10,115	10,530	11,145
1/2	(108)	(20.4)	(20.9)	(21.8)	(23.0)	(43.9)	(45.0)	(46.8)	(49.6)
E /0	5	6,175	6,765	7,190	7,610	13,305	14,575	15,485	16,390
5/8	(127)	(27.5)	(30.1)	(32.0)	(33.9)	(59.2)	(64.8)	(68.9)	(72.9)
2/4	6-5/8	9,420	10,320	11,430	12,100	20,290	22,230	24,625	26,060
3/4	(168)	(41.9)	(45.9)	(50.8)	(53.8)	(90.3)	(98.9)	(109.5)	(115.9)
7/0	6-5/8	9,420	10,320	11,915	14,115	20,290	22,230	25,670	30,405
7/8	(168)	(41.9)	(45.9)	(53.0)	(62.8)	(90.3)	(98.9)	(114.2)	(135.2)
_	8-1/4	13,090	14,340	16,560	20,090	28,200	30,890	35,670	43,275
'	(210)	(58.2)	(63.8)	(73.7)	(89.4)	(125.4)	(137.4)	(158.7)	(192.5)
4 4 (4 (10)	11	20,155	22,080	25,495	31,225	43,415	47,560	54,915	67,260
1-1/4 (10)	(279)	(89.7)	(98.2)	(113.4)	(138.9)	(193.1)	(211.6)	(244.3)	(299.2)

- See Section 3.1.8 for explanation on development of load values.
- See Section 3.1.8 to convert design strength value to ASD value. $Line ar interpolation\ between\ embedment\ depths\ and\ concrete\ compressive\ strengths\ is\ not\ permitted.$
- Apply spacing, edge distance, and concrete thickness factors in tables 7 10 as necessary to the above values. Compare to the steel values in table 6.

The lesser of the values is to be used for the design.

- Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C).
 For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above value by 0.93.
 For temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C) multiply above value by 0.58. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
- Tabular values are for dry or water saturated concrete conditions.
- Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8. Tabular values are for normal weight concrete only. For lightweight concrete multiply design strength by λ_a as follows: For sand-lightweight, $\lambda_a = 0.51$. For all-lightweight, $\lambda_a = 0.45$.
- For 3/8-in to 1-in dia. threaded rods, tabular values are for horizontal and vertical downward direction only. For overhead (vertical up) installation, tabular values must be multiplied by 0.70.
- 10 1-1/4-in diameter rods to be installed in generally vertically downward direction only.
- 11 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values in tension and shear

See section 3.1.8 for additional information on seismic applications.

Table 4 — Hilti HVU2 adhesive design strength with lesser of concrete or bond failure for threaded rod in uncracked concrete 1,2,3,4,5,6,7,8,9

Diamond core drilling

Nominal	Effective		Tension	n — ФN _п			Shear	— ФV _п	
anchor diameter in.	Effective embedment in. (mm)	f' _c = 2500 psi (17.2 Mpa) Ib (kN)	f' _c = 3000 psi (20.7 Mpa) Ib (kN)	f' _c = 4000 psi (27.6 Mpa) Ib (kN)	f' _c = 6000 psi (41.4 Mpa) Ib (kN)	f' _c = 2500 psi (17.2 Mpa) Ib (kN)	f' _c = 3000 psi (20.7 Mpa) Ib (kN)	f' _c = 4000 psi (27.6 Mpa) Ib (kN)	f' _c = 6000 psi (41.4 Mpa) Ib (kN)
1/0	4-1/4	6,835	7,485	8,645	9,970	14,720	16,125	18,620	21,475
1/2	(108)	(30.4)	(33.3)	(38.5)	(44.3)	(65.5)	(71.7)	(82.8)	(95.5)
F /9	5	8,720	9,555	11,030	13,510	18,785	20,575	23,760	29,100
5/8	(127)	(38.8)	(42.5)	(49.1)	(60.1)	(83.6)	(91.5)	(105.7)	(129.4)
0.44	6-5/8	13,300	14,570	16,825	20,605	28,650	31,380	36,235	44,380
3/4	(168)	(59.2)	(64.8)	(74.8)	(91.7)	(127.4)	(139.6)	(161.2)	(197.4)
7/0	6-5/8	13,300	14,570	16,825	20,605	28,650	31,380	36,235	44,380
7/8	(168)	(59.2)	(64.8)	(74.8)	(91.7)	(127.4)	(139.6)	(161.2)	(197.4)
-	8-1/4	18,485	20,245	23,380	28,635	39,810	43,610	50,355	61,675
ı	(210)	(82.2)	(90.1)	(104.0)	(127.4)	(177.1)	(194.0)	(224.0)	(274.3)
4 4 (4 (10)	11	28,455	31,175	35,995	44,085	61,290	67,140	77,530	94,950
1-1/4 (10)	(279)	(126.6)	(138.7)	(160.1)	(196.1)	(272.6)	(298.7)	(344.9)	(422.4)

Table 5 — Hilti HVU2 adhesive design strength with lesser of concrete or bond failure for threaded rod in cracked concrete 1,2,3,4,5,6,7,8,9,11

Diamond core drilling

Nominal	Title eti		Tension	n — ФN _п			Shear	— ΦV _n	
anchor diameter in.	Effective embedment in. (mm)	f' _c = 2500 psi (17.2 Mpa) Ib (kN)	f' _c = 3000 psi (20.7 Mpa) Ib (kN)	f' _c = 4000 psi (27.6 Mpa) Ib (kN)	f' _c = 6000 psi (41.4 Mpa) Ib (kN)	f' _c = 2500 psi (17.2 Mpa) lb (kN)	f' _c = 3000 psi (20.7 Mpa) Ib (kN)	f' _c = 4000 psi (27.6 Mpa) Ib (kN)	f' _c = 6000 psi (41.4 Mpa) lb (kN)
1/0	4-1/4	4,665	4,665	4,665	4,665	10,045	10,045	10,045	10,045
1/2	(108)	(20.8)	(20.8)	(20.8)	(20.8)	(44.7)	(44.7)	(44.7)	(44.7)
	5	6,175	6,765	6,860	6,860	13,305	14,575	14,775	14,775
5/8	(127)	(27.5)	(30.1)	(30.5)	(30.5)	(59.2)	(64.8)	(65.7)	(65.7)
0.44	6-5/8	9,420	10,320	10,905	10,905	20,290	22,230	23,495	23,495
3/4	(168)	(41.9)	(45.9)	(48.5)	(48.5)	(90.3)	(98.9)	(104.5)	(104.5)
7/0	6-5/8	9,420	10,320	11,915	12,725	20,290	22,230	25,670	27,410
7/8	(168)	(41.9)	(45.9)	(53.0)	(56.6)	(90.3)	(98.9)	(114.2)	(121.9)
-	8-1/4	13,090	14,340	16,560	18,110	28,200	30,890	35,670	39,005
1	(210)	(58.2)	(63.8)	(73.7)	(80.6)	(125.4)	(137.4)	(158.7)	(173.5)
4 4 (4 (10)	11	20,155	22,080	25,495	30,185	43,415	47,560	54,915	65,010
1-1/4 (10)	(279)	(89.7)	(98.2)	(113.4)	(134.3)	(193.1)	(211.6)	(244.3)	(289.2)

See Section 3.1.8 of for explanation on development of load values.

See Section 3.1.8 of to convert design strength value to ASD value.

Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

Apply spacing, edge distance, and concrete thickness factors in tables 7 – 10 as necessary to the above values. Compare to the steel values in table 6. The lesser of the values is to be used for the design.

Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above value by 0.93. For temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C) multiply above value by 0.58. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant

over significant periods of time. Tabular values are for dry or water saturated concrete conditions.

Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.

Tabular values are for normal weight concrete only. For lightweight concrete multiply design strength by λ_a as follows: For sand-lightweight, $\lambda_a = 0.51$. For all-lightweight, $\lambda_a = 0.45$.

For 1/2-in to 1-in dia. threaded rods, tabular values are for horizontal and vertical downward direction only. For overhead (vertical up) installation, tabular values must be multiplied by 0.70.

^{10 1-1/4-}in diameter rods to be installed in generally vertically downward direction only.

11 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values in tension and shear by $\alpha_{\text{sols}}=0.75.$ See section 3.1.8 for additional information on seismic applications.

Table 6 — Steel design strength for Hilti HAS threaded rods for use with ACI 318 Chapter 17

		E-55 / HAS-E-55 GTM F1554 Gr. 5			105 and HAS-B- 37 and ASTM F		ASTN	AS-R stainless st I F593 (3/8-in to A193 (1-1/8-in t	1-in) ⁵
Nominal anchor diameter in.	Tensile ¹ ΦN_{sa} Ib (kN)	Shear² ΦV _{sa} Ib (kN)	Seismic Shear³ ΦV _{sa.eq} Ib (kN)	Tensile¹ ΦΝ _{sa} Ib (kN)	Shear² ΦV _{sa} Ib (kN)	Seismic Shear ³ ΦV _{sa,eq} Ib (kN)	Tensile¹ ΦΝ _{sa} Ib (kN)	Shear² ΦV _{sa} Ib (kN)	Seismic Shear ³ ΦV _{sa.eq} Ib (kN)
0.70	4,360	2,270	1,590	7,270	3,780	2,645	5,040	2,790	1,955
3/8	(19.4)	(10.1)	(7.1)	(32.3)	(16.8)	(11.8)	(22.4)	(12.4)	(8.7)
1.00	7,985	4,150	2,905	13,305	6,920	4,845	9,225	5,110	3,575
1/2	(35.5)	(18.5)	(12.9)	(59.2)	(30.8)	(21.6)	(41.0)	(22.7)	(15.9)
E /0	12,715	6,610	4,625	21,190	11,020	7,715	14,690	8,135	5,695
5/8	(56.6)	(29.4)	(20.6)	(94.3)	(49.0)	(34.3)	(65.3)	(36.2)	(25.3)
2//	18,820	9,785	6,850	31,360	16,310	11,415	18,485	10,235	7,165
3/4	(83.7)	(43.5)	(30.5)	(139.5)	(72.6)	(50.8)	(82.2)	(45.5)	(31.9)
7/0	25,975	13,505	9,455	43,285	22,510	15,755	25,510	14,125	9,890
7/8	(115.5)	(60.1)	(42.1)	(192.5)	(100.1)	(70.1)	(113.5)	(62.8)	(44.0)
4	34,075	17,720	12,405	56,785	29,530	20,670	33,465	18,535	12,975
	(151.6)	(78.8)	(55.2)	(252.6)	(131.4)	(91.9)	(148.9)	(82.4)	(57.7)
1 1/4	54,515	28,345	19,840	90,855	47,245	33,070	41,430	21,545	12,925
1-1/4	(242.5)	(126.1)	(88.3)	(404.1)	(210.2)	(147.1)	(184.3)	(95.8)	(57.5)

¹ Tensile = ϕ A _{so,N} f_{uta} as noted in ACI 318 17.4.1.2 2 Shear = ϕ 0.60 A _{so,V} f_{uta} as noted in ACI 318 17.5.1.2b.

Seismic Shear = $\alpha_{V,seis} \phi V_{sa}$: Reduction factor for seismic shear only. See ACI 318 for additional information on seismic applications.

⁴ HAS-E (3/8-in to 1-1/4-in), HAS-B, and HAS-R (Class 1; 1-1/4-in) threaded rods are considered ductile steel elements (including HDG rods).

⁵ HAS-R (CW1 and CW2; 3/8-in to 1-in) threaded rods are considered brittle steel elements.

^{6 3/8-}inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-E-55, and HAS-B-105 (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

Table 7 — Load adjustment factors for 3/8, 1/2, 5/8, and 3/4-in. diameter threaded rods in uncracked concrete 1,2

	3/8, 1/2		Sp	acing	facto	r in	E	dge d	istano	e e	Sp	acing	facto	r in				distar	ice in	sheai	r		Con	crete	thick	ness
ti	5/8 & 3/4 hreaded r racked co	ods		tens f_{j}	sion			otor in f_{i}	tensi		- GP	she f_{j}	ar³		1	oward f	d edg	е		To e	_			ctor ir f	shea	
Т	hread size	e, in.	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4
Fmb	pedment	in.	3-1/2	4-1/4			3-1/2	4-1/4				4-1/4		6-5/8	3-1/2	4-1/4		6-5/8		4-1/4	5	_	3-1/2	4-1/4	-	6-5/8
	h _{ef}	(mm)	(89)	(108)	(127)	(168)	(89)	(108)	(127)	(168)	(89)	(108)	(127)	(168)	(89)	(108)	(127)	(168)	(89)	(108)	(127)	(168)	(89)	(108)	(127)	(168)
	1-7/8	(48)	0.59	n/a	n/a	n/a	0.30	n/a	n/a	n/a	0.53	n/a	n/a	n/a	0.10	n/a	n/a	n/a	0.19	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Ê	2	(51)	0.60	n/a	n/a	n/a	0.31	n/a	n/a	n/a	0.54	n/a	n/a	n/a	0.11	n/a	n/a	-	0.21	n/a	n/a	n/a	n/a	n/a	n/a	n/a
in (mm)	2-1/2	(64)	0.62	0.58	n/a	n/a	0.35	0.29	n/a	n/a	0.55	0.54	n/a	n/a	0.15	0.10	n/a	n/a	0.30	0.20	n/a	0.54	n/a	n/a	n/a	n/a
.⊑	3	(76)	0.64	0.60	n/a	n/a	0.38	0.31	n/a	n/a	0.56	0.54	n/a	n/a	0.19	0.13	n/a	n/a	0.38	0.26	n/a	0.54	n/a	n/a	n/a	n/a
Ξ΄	3-1/8	(79)	0.65	0.60	0.58	n/a	0.39	0.32	0.31	n/a	0.56	0.54	0.54	n/a	0.21	0.14	0.12	n/a	0.39	0.28	0.24	0.54	n/a	n/a	n/a	n/a
concrete thickness (h),	3-1/4	(83)	0.65	0.61	0.59	0.57	0.40	0.33	0.32	0.29	0.56	0.55	0.54	0.53	0.22	0.15	0.13	0.09	0.40	0.29	0.26	0.18	n/a	n/a	n/a	n/a
ü	4	(102)	_	-	0.61	0.59						0.56			_	0.20	-		0.46	0.37		0.25	n/a	n/a	n/a	n/a
흜	4-3/4	(121)	0.73	0.66	0.63	0.61	0.53	0.41	0.39	0.34	0.59	0.57	0.56	0.55	0.39	0.26	0.23	0.16	0.53	0.41	0.39	0.32	0.60	n/a	n/a	n/a
÷ ÷	5	(127)	0.74		0.63					0.35				0.55		0.28		-	0.55		0.40	0.34	0.61	n/a	n/a	n/a
rete	5-1/2	(140)		-	0.65	_		0.45				0.58					_	_				0.36		0.56		n/a
Suc	6	(152)	_	-	0.66	_	-	0.48		0.38		_					_	0.23	_	0.48	_	0.38		0.58		n/a
00/	6-3/8	(162)	0.80		0.67	0.64						0.59			_			-	_	0.51	_	0.40		0.60		n/a
(c _a)	7	(178)	0.83		0.69				0.51			0.60		0.57		0.46	_			0.56	0.51	0.42	0.72	0.63	0.60	n/a
e e	8	(203)	0.88	-	0.71		0.88											0.35	_							n/a
distance	8-3/8	(213)	_	0.78	0.72		_					0.62					0.53		-			0.48		0.69	_	0.59
list	10	(254)	0.98	0.84	0.77	0.72	1.00	0.80				_	0.63		1.00	0.79	_	0.49	1.00	0.80	_	0.54	0.86			0.64
<u>e</u>	12	(305)	1.00	0.90		0.77		0.96		0.65		0.67	_	_		1.00		0.64			0.85			0.83		0.70
edge	14	(356)		0.97	0.88	0.81		1.00	1.00	0.76		0.70		0.64			1.00	0.81		1.00	1.00	0.76	1.00	0.89		0.76
_	16	(406)		1.00	0.93					-	0.80	-	0.71	0.67				0.99				0.87		0.95	_	0.81
g (s	18	(457)			0.98	_						0.76		0.69				1.00				0.98		1.00		0.86
oju ć	24	(610)			1.00	1.00				1.00			0.81	0.75								1.00			1.00	1.00
Spacing (s)	30 36	(762) (914)				-	-				1.00	0.93 1.00	0.89	0.81				\vdash								_
S	> 48	(914)				-	-					1.00	1.00	1.00				\vdash			-					_
	/ 48	(1219)				l							1.00	1.00							l		<u> </u>		l	

Table 8 — Load adjustment factors for 1/2, 5/8, and 3/4-in. diameter threaded rods in cracked concrete^{1,2}

	1/2, 5/8 &												Edg	e distar	nce in s	hear				
	3/4-in. threaded ro			ing fac			je dista or in ter		Spac	ing fac	tor in					ı			ete thic	
	cracked			f_{AN}			$f_{\sf RN}$			f_{AV}		To	ward ec	lge		To edge	;		f_{HV}	
	concrete				1								f _{RV}			$f_{\sf RV}$				
	Thread size,	in.	1/2	5/8	3/4	1/2	5/8	3/4	1/2	5/8	3/4	1/2	5/8	3/4	1/2	5/8	3/4	1/2	5/8	3/4
Emh	edment h	in.	4-1/4	5	6-5/8	4-1/4	5	6-5/8	4-1/4	5	6-5/8	4-1/4	5	6-5/8	4-1/4	5	6-5/8	4-1/4	5	6-5/8
	Jedinent n _{ef}	(mm)	(108)	(127)	(168)	(108)	(127)	(168)	(108)	(127)	(168)	(108)	(127)	(168)	(108)	(127)	(168)	(108)	(127)	(168)
(mm)	2-1/2	(64)	0.58	n/a	n/a	0.53	n/a	n/a	0.54	n/a	n/a	0.11	n/a	n/a	0.21	n/a	n/a	n/a	n/a	n/a
Ξ.	3	(76)	0.60	n/a	n/a	0.58	n/a	n/a	0.54	n/a	n/a	0.14	n/a	n/a	0.28	n/a	n/a	n/a	n/a	n/a
.⊑	3-1/8	(79)	0.60	0.58	n/a	0.59	0.53	n/a	0.55	0.54	n/a	0.15	0.12	n/a	0.29	0.24	n/a	n/a	n/a	n/a
(Ē)	3-1/4	(83)	0.61	0.59	0.57	0.60	0.54	0.51	0.55	0.54	0.53	0.16	0.13	0.09	0.31	0.26	0.18	n/a	n/a	n/a
) ss	4	(102)	0.63	0.61	0.59	0.66	0.59	0.55	0.56	0.55	0.54	0.21	0.18	0.12	0.43	0.35	0.25	n/a	n/a	n/a
nes	4-3/4	(121)	0.66	0.63	0.61	0.73	0.64	0.59	0.57	0.56	0.55	0.28	0.23	0.16	0.55	0.46	0.32	n/a	n/a	n/a
3	5	(127)	0.67	0.63	0.61	0.75	0.66	0.60	0.57	0.57	0.55	0.30	0.25	0.17	0.60	0.49	0.35	n/a	n/a	n/a
concrete thickness	5-1/2	(140)	0.68	0.65	0.62	0.80	0.70	0.63	0.58	0.57	0.56	0.34	0.28	0.20	0.69	0.57	0.40	0.57	n/a	n/a
ete	6	(152)	0.70	0.66	0.63	0.85	0.73	0.66	0.59	0.58	0.56	0.39	0.32	0.23	0.78	0.65	0.46	0.60	n/a	n/a
J.C.	6-3/8	(162)	0.71	0.67	0.64	0.89	0.76	0.68	0.59	0.58	0.57	0.43	0.36	0.25	0.86	0.71	0.50	0.62	0.58	n/a
	7	(178)	0.73	0.69	0.66	0.95	0.81	0.72	0.60	0.59	0.57	0.49	0.41	0.29	0.95	0.81	0.57	0.65	0.61	n/a
, (a	8	(203)	0.77	0.71	0.68	1.00	0.89	0.78	0.62	0.60	0.58	0.60	0.50	0.35	1.00	0.89	0.70	0.69	0.65	n/a
distance (c _a)	8-3/8	(213)	0.78	0.72	0.69		0.92	0.81	0.62	0.61	0.59	0.65	0.53	0.38		0.92	0.75	0.71	0.66	0.59
nce	10	(254)	0.84	0.77	0.72		1.00	0.92	0.65	0.63	0.60	0.84	0.70	0.49		1.00	0.92	0.77	0.72	0.64
stal	12	(305)	0.90	0.82	0.77			1.00	0.68	0.66	0.62	1.00	0.92	0.65			1.00	0.84	0.79	0.71
ä	14	(356)	0.97	0.88	0.81				0.71	0.68	0.65		1.00	0.81				0.91	0.86	0.76
edge	16	(406)	1.00	0.93	0.86				0.74	0.71	0.67			0.99				0.98	0.92	0.81
) ec	18	(457)		0.98	0.90				0.77	0.74	0.69			1.00				1.00	0.97	0.86
	24	(610)		1.00	1.00				0.86	0.81	0.75								1.00	1.00
Spacing (s)	30	(762)							0.95	0.89	0.81									
aci	36	(914)							1.00	0.97	0.87									
Sp	> 48	(1219)								1.00	1.00									
	ear interpolatio	n not no	rmitted		•															

Linear interpolation not permitted.

² When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very

conservative. To optimize the design, use PROFIS Engineering or perform anchor calculation using design equations from ACI 318 Chapter 17. 3 Spacing factor reduction in shear, $f_{_{AV^*}}$ is applicable when edge distance $c < 3^*h_{_{\rm eff}}$. If $c \ge 3^*h_{_{\rm eff}}$ then $f_{_{AV}} = f_{_{AN}}$. 4 Concrete thickness reduction factor in shear, $f_{_{HV^*}}$ is applicable when edge distance $c < 3^*h_{_{\rm eff}}$ then $f_{_{HV}} = 1.0$.

Table 9 — Load adjustment factors for 7/8, 1, and 1-1/4-in. diameter threaded rods in uncracked concrete 1,2

													Edg	e distar	nce in s	hear				
í	/8, 1 & 1-1/- chreaded re cracked co	ods		tension $f_{\scriptscriptstyle{\mathrm{AN}}}$			le dista or in ter $f_{\scriptscriptstyle{RN}}$		Spac	sing fac shear ⁴ $f_{\scriptscriptstyle{AV}}$	tor in	To	ward ec $f_{\rm RV}$	lge		To edge $f_{\sf RV}$)		ete thic or in sh $f_{\scriptscriptstyle \mathrm{HV}}$	
Т	hread size	, in.	7/8	1	1 1/4	7/8	1	1 1/4	7/8	1	1 1/4	7/8	1	1 1/4	7/8	1	1 1/4	7/8	1	1 1/4
		in.	6-5/8	8-1/4	11	6-5/8	8-1/4	11	6-5/8	8-1/4	11	6-5/8	8-1/4	11	6-5/8	8-1/4	11	6-5/8	8-1/4	11
Embe	dment h _{ef}	(mm)	(168)	(210)	(279)	(168)	(210)	(279)	(168)	(210)	(279)	(168)	(210)	(279)	(168)	(210)	(279)	(168)	(210)	(279)
	4-3/8	(111)	0.58	n/a	n/a	0.35	n/a	n/a	0.55	n/a	n/a	0.14	n/a	n/a	0.28	n/a	n/a	n/a	n/a	n/a
Œ	5	(127)	0.60	0.58	n/a	0.37	0.34	n/a	0.55	0.54	n/a	0.17	0.12	n/a	0.34	0.25	n/a	n/a	n/a	n/a
- in (mm)	6	(152)	0.61	0.60	n/a	0.41	0.37	n/a	0.56	0.55	n/a	0.23	0.16	n/a	0.41	0.33	n/a	n/a	n/a	n/a
.⊑	6-1/4	(159)	0.62	0.60	0.58	0.42	0.37	0.34	0.56	0.55	0.54	0.24	0.17	0.11	0.42	0.35	0.22	n/a	n/a	n/a
h),	7	(178)	0.63	0.62	0.59	0.45	0.40	0.35	0.57	0.56	0.54	0.29	0.21	0.13	0.45	0.40	0.27	n/a	n/a	n/a
edge distance ($c_{_{\rm J}}/$ concrete thickness (h),	8	(203)	0.65	0.63	0.61	0.50	0.43	0.37	0.58	0.57	0.55	0.35	0.25	0.16	0.50	0.43	0.33	n/a	n/a	n/a
Ë	8-5/8	(219)	0.67	0.64	0.61	0.52	0.45	0.39	0.59	0.57	0.55	0.39	0.28	0.18	0.52	0.45	0.36	0.60	n/a	n/a
흜	9	(229)	0.67	0.65	0.62	0.54	0.46	0.40	0.59	0.57	0.56	0.42	0.30	0.19	0.54	0.46	0.39	0.61	n/a	n/a
₽	10	(254)	0.69	0.67	0.63	0.59	0.50	0.42	0.60	0.58	0.56	0.49	0.35	0.23	0.59	0.50	0.42	0.64	n/a	n/a
ret	10-1/2	(267)	0.70	0.68	0.64	0.62	0.51	0.44	0.61	0.59	0.57	0.52	0.38	0.24	0.62	0.51	0.44	0.66	0.59	n/a
nc	11	(279)	0.71	0.68	0.65	0.64	0.53	0.45	0.61	0.59	0.57	0.56	0.40	0.26	0.64	0.53	0.45	0.67	0.60	n/a
Ś	12	(305)	0.73	0.70	0.66	0.70	0.57	0.47	0.62	0.60	0.57	0.64	0.46	0.30	0.70	0.57	0.47	0.70	0.63	n/a
(a)	13	(330)	0.75	0.72	0.67	0.76	0.61	0.50	0.63	0.61	0.58	0.72	0.52	0.34	0.76	0.61	0.50	0.73	0.66	n/a
) e	13-3/4	(349)	0.76	0.73	0.68	0.81	0.65	0.52	0.64	0.61	0.59	0.78	0.56	0.37	0.81	0.65	0.52	0.75	0.67	0.58
anc	14	(356)	0.77	0.73	0.68	0.82	0.66	0.53	0.64	0.62	0.59	0.81	0.58	0.38	0.82	0.66	0.53	0.76	0.68	0.59
iste	15	(381)	0.79	0.75	0.70	0.88	0.71	0.55	0.65	0.62	0.59	0.89	0.64	0.42	0.88	0.71	0.55	0.79	0.70	0.61
e q	16	(406)	0.81	0.77	0.71	0.94	0.75	0.58	0.67	0.63	0.60	0.99	0.71	0.46	0.94	0.75	0.58	0.81	0.73	0.63
ģ	17	(432)	0.83	0.78	0.72	1.00	0.80	0.62	0.68	0.64	0.61	1.00	0.78	0.50	1.00	0.80	0.62	0.84	0.75	0.65
_	18	(457)	0.84	0.80	0.74		0.85	0.65	0.69	0.65	0.61		0.85	0.55		0.85	0.65	0.86	0.77	0.67
(s)	20	(508)	0.88	0.84	0.76		0.94	0.72	0.71	0.67	0.62		0.99	0.64		0.94	0.72	0.91	0.81	0.70
ing.	24	(610)	0.96	0.90	0.82		1.00	0.87	0.75	0.70	0.65		1.00	0.85		1.00	0.87	1.00	0.89	0.77
Spacing (s)	30	(762)	1.00	1.00	0.90			1.00	0.81	0.75	0.69			1.00			1.00		1.00	0.86
ઝ	36	(914)			0.97				0.87	0.80	0.72									0.95
	> 48	(1219)			1.00				1.00	0.90	0.80									1.00

Table 10 — Load adjustment factors for 7/8, 1, and 1-1/4-in. diameter threaded rods in cracked concrete^{1,2}

													Edg	e distar	nce in sl	near				
i	/8, 1 & 1-1/4 threaded ro acked cond	ods		ing factension			ge dista or in ten $f_{\scriptscriptstyle{RN}}$		Spac	ing fac shear ⁴ $f_{\scriptscriptstyle{AV}}$	tor in	Tov	\perp ward ed $f_{\scriptscriptstyle \mathrm{RV}}$	lge	-	To edge $f_{_{\mathrm{RV}}}$)		ete thic or in sh $f_{\scriptscriptstyle \mathrm{HV}}$	
Т	hread size	, in.	7/8	1	1 1/4	7/8	1	1 1/4	7/8	1	1 1/4	7/8	1	1 1/4	7/8	1	1 1/4	7/8	1	1 1/4
	alian a in tella	in.	6-5/8	8-1/4	11	6-5/8	8-1/4	11	6-5/8	8-1/4	11	6-5/8	8-1/4	11	6-5/8	8-1/4	11	6-5/8	8-1/4	11
Embe	dment h _{ef}	(mm)	(168)	(210)	(279)	(168)	(210)	(279)	(168)	(210)	(279)	(168)	(210)	(279)	(168)	(210)	(279)	(168)	(210)	(279)
	4-3/8	(111)	0.58	n/a	n/a	0.53	n/a	n/a	0.55	n/a	n/a	0.14	n/a	n/a	0.28	n/a	n/a	n/a	n/a	n/a
(mm)	5	(127)	0.60	0.58	n/a	0.56	0.53	n/a	0.55	0.54	n/a	0.17	0.12	n/a	0.35	0.25	n/a	n/a	n/a	n/a
Ē	6	(152)	0.61	0.60	n/a	0.61	0.58	n/a	0.56	0.55	n/a	0.23	0.16	n/a	0.46	0.33	n/a	n/a	n/a	n/a
.⊑	6-1/4	(159)	0.62	0.60	0.58	0.62	0.59	0.53	0.56	0.55	0.54	0.24	0.17	0.11	0.49	0.35	0.23	n/a	n/a	n/a
(h),	7	(178)	0.63	0.62	0.59	0.66	0.62	0.56	0.57	0.56	0.54	0.29	0.21	0.13	0.57	0.41	0.27	n/a	n/a	n/a
ss (8	(203)	0.65	0.63	0.61	0.71	0.66	0.59	0.58	0.57	0.55	0.35	0.25	0.16	0.70	0.51	0.33	n/a	n/a	n/a
цё	8-5/8	(219)	0.67	0.64	0.61	0.75	0.69	0.61	0.59	0.57	0.55	0.39	0.28	0.18	0.75	0.57	0.37	0.60	n/a	n/a
<u>:</u>	9	(229)	0.67	0.65	0.62	0.77	0.71	0.62	0.59	0.57	0.56	0.42	0.30	0.20	0.77	0.60	0.39	0.61	n/a	n/a
concrete thickness	10	(254)	0.69	0.67	0.63	0.82	0.75	0.66	0.60	0.58	0.56	0.49	0.35	0.23	0.82	0.71	0.46	0.64	n/a	n/a
rete	10-1/2	(267)	0.70	0.68	0.64	0.85	0.78	0.67	0.61	0.59	0.57	0.53	0.38	0.25	0.85	0.76	0.49	0.66	0.59	n/a
D.	11	(279)	0.71	0.68	0.65	0.88	0.80	0.69	0.61	0.59	0.57	0.57	0.41	0.26	0.88	0.80	0.53	0.68	0.61	n/a
	12	(305)	0.73	0.70	0.66	0.94	0.85	0.73	0.62	0.60	0.57	0.65	0.46	0.30	0.94	0.85	0.60	0.71	0.63	n/a
(a)	13	(330)	0.75	0.72	0.67	1.00	0.90	0.76	0.63	0.61	0.58	0.73	0.52	0.34	1.00	0.90	0.68	0.73	0.66	n/a
distance (c _a)	13-3/4	(349)	0.76	0.73	0.68		0.94	0.79	0.64	0.61	0.59	0.79	0.57	0.37		0.94	0.74	0.76	0.68	0.59
Ü	14	(356)	0.77	0.73	0.68		0.95	0.80	0.65	0.62	0.59	0.81	0.59	0.38		0.95	0.76	0.76	0.68	0.59
sta	15	(381)	0.79	0.75	0.70		1.00	0.84	0.66	0.62	0.59	0.90	0.65	0.42		1.00	0.84	0.79	0.71	0.61
0	16	(406)	0.81	0.77	0.71			0.88	0.67	0.63	0.60	0.99	0.71	0.46			0.88	0.81	0.73	0.63
edge	17	(432)	0.83	0.78	0.72			0.92	0.68	0.64	0.61	1.00	0.78	0.51			0.92	0.84	0.75	0.65
_	18	(457)	0.84	0.80	0.74			0.96	0.69	0.65	0.61		0.85	0.55			0.96	0.86	0.77	0.67
(8)	20	(508)	0.88	0.84	0.76			1.00	0.71	0.67	0.62		1.00	0.65			1.00	0.91	0.82	0.71
ng	24	(610)	0.96	0.90	0.82				0.75	0.70	0.65			0.85				1.00	0.89	0.77
Spacing	30	(762)	1.00	1.00	0.90				0.81	0.75	0.69			1.00					1.00	0.87
Sp	36	(914)			0.97				0.87	0.80	0.72									0.95
	> 48	(1219)			1.00				1.00	0.90	0.80									1.00

¹ Linear interpolation not permitted

² When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very

conservative. To optimize the design, use PROFIS Engineering or perform anchor calculation using design equations from ACI 318 Chapter 17.

3 Spacing factor reduction in shear, f_{AV} , is applicable when edge distance $c < 3^*h_{er}$. If $c \ge 3^*h_{er}$, then $f_{AV} = f_{AN}$.

4 Concrete thickness reduction factor in shear, f_{HV} is applicable when edge distance $c < 3^*h_{er}$. If $c \ge 3^*h_{er}$, then $f_{HV} = 1.0$.

Hilti HVU2 with Hilti HIS-N Inserts

Figure 3 — Hilti HIS-N and HIS-RN internally threaded insert installation conditions

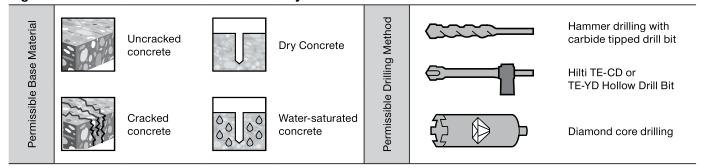
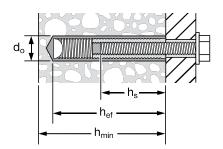



Table 11 — Hilti HIS-N and HIS-RN internally threaded insert installation specifications

Oaktion information		Oursells all	11-14-		Threa	d Size	
Setting information		Symbol	Units	3/8-16 UNC	1/2-13 UNC	5/8-11 UNC	3/4-10 UNC
Outside diameter of insert			in.	0.65	0.81	1.00	1.09
Nominal bit diameter (all drilling	g methods)	d _。	in.	11/16	7/8	1-1/8	1-1/4
Effective embedment			in.	4-3/8	5	6-3/4	8-1/8
Effective embedment		h _{ef}	(mm)	(110)	(125)	(170)	(205)
Thread angeroment	minimum	h	in.	3/8	1/2	5/8	3/4
Thread engagement	maximum	h _s	in.	15/16	1-3/16	1-1/2	1-7/8
Installation torque		_	ft-lb	15	30	60	100
Installation torque		T _{inst}	(Nm)	(20)	(41)	(81)	(136)
Minimum Concrete Thickness		h	in.	5-7/8	6-3/4	9	10-5/8
Minimum Concrete Thickness		h _{min}	(mm)	(150)	(170)	(230)	(270)
NAissian una antara diataman		_	in.	3-1/4	4	5	5-1/2
Minimum edge distance		C _{min}	(mm)	(83)	(102)	(127)	(140)
Minimum on a in a			in.	3-1/4	4	5	5-1/2
Minimum spacing		S _{min}	(mm)	(83)	(102)	(127)	(140)

Figure 4 — Hilti HIS-N and HIS-RN internally threaded inserts installed with Hilti HVU2 adhesive capsules

3.2.6

DESIGN OF HILTI HVU2 ADHESIVE CAPSULES WITH HIS-N AND HIS-RN INSERTS PER ACI 318 CHAPTER 17

Hilti HVU2 adhesive capsule testing for ICC-ES ESR-4372 did not include the Hilti HIS-N and HIS-RN inserts. Additional testing was performed with the HIS-N and HIS-RN inserts and the results evaluated per ACI 355.4 and ICC-ES AC308 and published in the following tables. The tables include the design parameters per ACI 318 Ch. 17 and the parameters are

ACI 318 Ch. 17 to develop the Hilti Simplified Design Tables. For a detailed explanation of the Hilti Simplified Design Tables, refer to section 3.1.8.

Table 12 — HVU2 adhesive capsule design information with Hilti HIS-N and HIS-RN internally threaded inserts per ACI 318 Chapter 17 ¹

Hammer drilling with carbide tipped drill bit, or Hilti TE-CD or TE-YD Hollow Drill Bit

Setting inf	formation	Symbol	Units	N	ominal bolt/cap	screw diameter (in)
Setting in		Syllibol	Offics	3/8	1/2	5/8	3/4
HIS incart	outside diameter	d _a	in.	0.65	0.81	1.00	1.09
i iio iiisei t	. outside diameter	u _a	(mm)	(16.5)	(20.5)	(25.4)	(27.6)
Effective e	embedment ²	h _{ef}	in.	4-1/4	5	6-3/4	8-1/8
		''ef	(mm)	(110)	(125)	(170)	(205)
Minimum	concrete thickness ²	h _{min}	in.	5-7/8	6-3/4	9	10-5/8
			(mm)	(150)	(170)	(230)	(270)
Critical ed	dge distance	C _{ac}	-		See footno	ote 8 below	
Minimum	edge distance	C _{min}	in.	3-1/4	4	5	5-1/2
VIIIIIIIIIIII		min	(mm)	(83)	(102)	(127)	(140)
√linimum :	anchor spacing	S _{min}	in.	3-1/4	4	5	5-1/2
		min	(mm)	(83)	(102)	(127)	(140)
Effectiven	ess factor for uncracked concrete 3	k _{c,uncr}	in-lb			24	
		c,uncr	(SI)			0.0)	
Effectiven	ess factor for cracked concrete 3	k _{c,cr}	in-lb		-	7	
			(SI)			7.1)	
Strength r	reduction factor for concrete failure in tension 4	Φ _{c,N}	-		0.	65	
Strength r	reduction factor for concrete failure in shear 4	Ф _{с,V}	-		0.	70	
9	Characteristic bond stress in cracked concrete 6,7	_	psi	725	725	725	725
Temp. range A ⁵	Characteristic bond stress in chacked concrete	τ _{cr}	(MPa)	(4.99)	(4.99)	(4.99)	(4.99)
Ter	Characteristic bond stress in uncracked concrete ^{6,7}	_	psi	1,490	1,490	1,490	1,490
	Characteristic Bena Stress in ancrastica sentitives	τ _{uncr}	(MPa)	(10.26)	(10.26)	(10.26)	(10.26)
. 20	Characteristic bond stress in cracked concrete 6,7	$\tau_{\rm cr}$	psi	670	670	670	670
Temp. range B ⁽		cr	(MPa)	(4.63)	(4.63)	(4.63)	(4.63)
Te	Characteristic bond stress in uncracked concrete ^{6,7}	τ _{uncr}	psi	1,380	1,380	1,380	1,380
		uncr	(MPa)	(9.53)	(9.53)	(9.53)	(9.53)
o O	Characteristic bond stress in cracked concrete 6,7	$\tau_{\rm cr}$	psi	420	420	420	420
ge (G	(MPa)	(2.90)	(2.90)	(2.90)	(2.90)
Temp. range C∜	Characteristic bond stress in uncracked concrete ^{6,7}	τ _{uncr}	psi (MP-)	865	865	865	865
		-	(MPa)	(5.97)	(5.97)	(5.97)	(5.97)
Reduction	n for seismic tension	α _{N,seis}	-		1	.0	
Permissible installation conditions	Strength reduction factor for bond failure, dry concrete	Anchor category	-			1	
	Concrete	Φ _d	-		0.	65	
	Strength reduction factor for bond failure, water-	Anchor category	-			1	
	saturated concrete	Φ	_		0	65	

- Design information in this table is based on testing in accordance with ACI 355.4.
- See Figure 4.
- For all design cases, $\Psi_{c,N}=1.0$. The appropriate coefficient for breakout resistance for cracked concrete $(k_{c,or})$ or uncracked concrete $(k_{c,or})$ must be used. Values provided for post-installed anchors under Condition B without supplementary
- reinforcement as defined in ACI 318 17.3.3. For cases where the presence of supplementary reinforcement can be verified, the
- reduction factors associated with Condition A may be used. Temperature range A: Max. short term temperature = 130°F (55°C), max. long term
- temperature = 110°F (43°C). Temperature range B: Max. short term temperature = 176°F (80°C), max. long term
- temperature = 110°F (43°C). Temperature range C: Max. short term temperature = 248°F (120°C), max. long term
- temperature = 162°F (72°C). Short term elevated concrete temperatures are those that occur over brief intervals,
- e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
- Bond strength values corresponding to concrete compressive strength f' $_{\rm c}$ = 2,500 psi (17.2 MPa). For concrete compressive strength, $f_{\rm c}'$, between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f'_{\sigma}/2,500)^n$ [for SI: $(f'_{\sigma}/17.2)^n$],
- where n is as follows:
- n = 0 for uncracked concrete, all drilling methods n = 0.26 for cracked concrete, carbide bit or Hilti hollow drill bit
- Characteristic bond strengths are for horizontal and vertical downward direction only. For overhead (vertical up) installation, bond strengths must be multiplied by 0.70.
- 8 $c_{ac} = h_{ef} \cdot \left(\frac{\tau_{k,uncr}}{1,160}\right)^{0.4} \cdot \left[3.1 0.7 \cdot \frac{h}{h_{ef}}\right]$, where
 - need not be greater than 2.4, and
 - $\tau_{k,uner} \text{ need not be greater than } \tau_{k,uner} = \frac{\tau_{k,uner} \sqrt{\hbar_{er} \cdot f_{e}^{'}}}{\pi \cdot d_{a}} \text{ (use imperial units in all equations)}$

Table 13 — HVU2 adhesive capsule design information with Hilti HIS-N and HIS-RN internally threaded inserts per ACI 318 Chapter 17 1,2

Catting information		Cumbal	Units	No	minal bolt/cap	screw diameter	(in)
Setting information		Symbol	Units	3/8	1/2	5/8	3/4
	Characteristic bond stress in		psi	505	505	505	505
Temp.	cracked concrete 4,5	$ au_{cr}$	(MPa)	(3.49)	(3.49)	(3.49)	(3.49)
range A ³	Characteristic bond stress in		psi	1,415	1,415	1,415	1,415
	uncracked concrete 4,5	τ _{uncr}	(MPa)	(9.77)	(9.77)	(9.77)	(9.77)
	Characteristic bond stress in		psi	475	475	475	475
Temp.	cracked concrete 4,5	τ _{cr}	(MPa)	(3.28)	(3.28)	(3.28)	(3.28)
range B ³	Characteristic bond stress in	_	psi	1,330	1,330	1,330	1,330
	uncracked concrete 4,5	τ _{uncr}	(MPa)	(9.17)	(9.17)	(9.17)	(9.17)
	Characteristic bond stress in	_	psi	305	305	305	305
Temp.	cracked concrete 4,5	$ au_{cr}$	(MPa)	(2.11)	(2.11)	(2.11)	(2.11)
range C ³	Characteristic bond stress in	_	psi	855	855	855	855
	uncracked concrete 4,5	τ _{uncr}	(MPa)	(5.89)	(5.89)	(5.89)	(5.89)
Reduction for seismic	tension	α _{N,seis}	-		1.	.0	

Design information in this table is based on testing in accordance with ACI 355.4.

Table 14 — Steel design strength for steel bolt and cap screw for Hilti HIS-N and HIS-RN internally threaded inserts^{1,2,3}

		ASTM A193 B7		A	STM A193 Grade B8I stainless steel	М
Thread size	Tensile⁴ φN _{sa} lb (kN)	Shear ^δ φV _{sa} lb (kN)	Seismic Shear ⁶ φV _{sa,eq} lb (kN)	Tensile⁴ φN _{sa} lb (kN)	Shear ⁵ φV _{sa} lb (kN)	Seismic Shear ⁶ φV _{sa,eq} lb (kN)
3/8-16 UNC	6,300	3,490	2,445	5,540	3,070	2,150
	(28.0)	(15.5)	(10.9)	(24.6)	(13.7)	(9.6)
1/2-13 UNC	11,530	6,385	4,470	10,145	5,620	3,935
	(51.3)	(28.4)	(19.9)	(45.1)	(25.0)	(17.5)
5/8-11 UNC	18,365	10,170	7,120	16,160	8,950	6,265
	(81.7)	(45.2)	(31.6)	(71.9)	(39.8)	(27.9)
3/4-10 UNC	27,180	15,055	10,540	23,915	13,245	9,270
	(120.9)	(67.0)	(46.9)	(106.4)	(58.9)	(41.2)

¹ See section 3.1.8 to convert design strength (factored resistance) value to ASD value.

Items from Table 12 (a_a^* h_{efr}^* h_{min}^* , c_{ao}^* , c_{min}^* , s_{min}^* , $s_$

Temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C)

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Bond strength values corresponding to concrete compressive strength f' = 2,500 psi (17.2 MPa). For concrete compressive strength, f', between 2,500 psi (17.2 MPa) and 8,000

^{(55,2} MPa), the tabulated characteristic bond strength may be increased by a factor of $(f'_{\sigma}/2,500)^n$ [for SI: $(f'_{\sigma}/17.2)^n$], where n is as follows: n = 0 for uncracked concrete, all drilling methods n = 0.18 for cracked concrete, diamond core drill bit

Characteristic bond strengths are for horizontal and vertical downward direction only. For overhead (vertical up) installation, bond strengths must be multiplied by 0.70.

² Hilti HIS-N and HIS-RN inserts with steel bolts are to be considered brittle steel elements.

³ Table values are the lesser of steel failure in the HIS-N insert or inserted steel bolt.

⁴ Tensile = $\phi A_{se,N} f_{uta}$ as noted in ACI 318 Chapter 17.

⁵ Shear values determined by static shear tests with $\phi V_{sa} \le \phi \ 0.60 \ A_{so,V} f_{uta}$ as noted in ACI 318 Chapter 17.

⁶ Seismic Shear = $\alpha_{V,seis}$ $\phi_{V,sei}$: Reduction for seismic shear only. See section 3.1.8 for additional information on seismic applications.

Table 15 — Hilti HVU2 adhesive design strength with lesser of concrete or bond failure for HIS-N and HIS-RN internally threaded inserts in uncracked concrete 1,2,3,4,5,6,7,8,9

Hammer drilling with carbide tipped drill bit, or Hilti TE-CD or TE-YD Hollow Drill Bit

	Effortivo		Tension	— ФN _п			Shear	— ФV _п	
Thread size	Effective embedment in. (mm)	f' _c = 2500 psi (17.2 Mpa) lb (kN)	f' _c = 3000 psi (20.7 Mpa) Ib (kN)	f'_c = 4000 psi (27.6 Mpa) lb (kN)	f' _c = 6000 psi (41.4 Mpa) Ib (kN)	f' _c = 2500 psi (17.2 Mpa) Ib (kN)	f' _c = 3000 psi (20.7 Mpa) Ib (kN)	f' _c = 4000 psi (27.6 Mpa) Ib (kN)	f' _c = 6000 psi (41.4 Mpa) Ib (kN)
0/0.40.1110	4-3/8	7,140	7,820	8,650	8,650	15,375	16,840	18,635	18,635
3/8-16 UNC	(110)	(31.8)	(34.8)	(38.5)	(38.5)	(68.4)	(74.9)	(82.9)	(82.9)
1/0.10.11110	5	8,720	9,555	11,030	12,325	18,785	20,575	23,760	26,540
1/2-13 UNC	(125)	(38.8)	(42.5)	(49.1)	(54.8)	(83.6)	(91.5)	(105.7)	(118.1)
5/0.44 LINO	6-3/4	13,680	14,985	17,305	20,540	29,460	32,275	37,265	44,235
5/8-11 UNC	(170)	(60.9)	(66.7)	(77.0)	(91.4)	(131.0)	(143.6)	(165.8)	(196.8)
0/4 10 UNO	8-1/8	18,065	19,790	22,850	26,945	38,910	42,620	49,215	58,040
3/4-10 UNC	(205)	(80.4)	(88.0)	(101.6)	(119.9)	(173.1)	(189.6)	(218.9)	(258.2)

Table 16 — Hilti HVU2 adhesive design strength with lesser of concrete or bond failure for HIS-N and HIS-RN internally threaded inserts in cracked concrete 1,2,3,4,5,6,7,8,9,10

Hammer drilling with carbide tipped drill bit, or Hilti TE-CD or TE-YD Hollow Drill Bit

	E44 - 45		Tension	n — ФN _п			Shear	— ΦV _n	
Thread size	Effective embedment in. (mm)	f' _c = 2500 psi (17.2 Mpa) Ib (kN)	f' _c = 3000 psi (20.7 Mpa) Ib (kN)	f' _c = 4000 psi (27.6 Mpa) Ib (kN)	f' _c = 6000 psi (41.4 Mpa) Ib (kN)	f' _c = 2500 psi (17.2 Mpa) Ib (kN)	f' _c = 3000 psi (20.7 Mpa) Ib (kN)	f' _c = 4000 psi (27.6 Mpa) Ib (kN)	f' _c = 6000 psi (41.4 Mpa) lb (kN)
2/9 16 LING	4-3/8	4,210	4,415	4,755	5,285	9,070	9,510	10,245	11,385
3/8-16 UNC	(110)	(18.7)	(19.6)	(21.2)	(23.5)	(40.3)	(42.3)	(45.6)	(50.6)
	5	5,995	6,285	6,775	7,530	12,915	13,540	14,595	16,215
1/2-13 UNC	(125)	(26.7)	(28.0)	(30.1)	(33.5)	(57.4)	(60.2)	(64.9)	(72.1)
E/0.11 LINC	6-3/4	9,690	10,480	11,290	12,550	20,870	22,570	24,320	27,025
5/8-11 UNC	(170)	(43.1)	(46.6)	(50.2)	(55.8)	(92.8)	(100.4)	(108.2)	(120.2)
2/4 10 UNC	8-1/8	12,795	13,750	14,815	16,465	27,560	29,610	31,910	35,460
3/4-10 UNC	(205)	(56.9)	(61.2)	(65.9)	(73.2)	(122.6)	(131.7)	(141.9)	(157.7)

- See Section 3.1.8 for explanation on development of load values.
- See Section 3.1.8 to convert design strength value to ASD value.
- Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
- Apply spacing, edge distance, and concrete thickness factors in tables 19 20 as necessary to the above values. Compare to the steel values in table 14. The lesser of the values is to be used for the design.
- Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above value by 0.93. For temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C) multiply above value by 0.58. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
- Tabular values are for dry or water saturated concrete conditions.
- Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8. Tabular values are for normal weight concrete only. For lightweight concrete multiply design strength by λ_a as follows:
- For sand-lightweight, $\lambda_a = 0.51$. For all-lightweight, $\lambda_a = 0.45$.
- Tabular values are for horizontal and vertical downward direction only. For overhead (vertical up) installation, tabular values must be multiplied by 0.70.
- 10 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values in tension and shear

by $\alpha_{\text{seis}} = 0.75$. See section 3.1.8 for additional information on seismic applications.

Table 17 — Hilti HVU2 adhesive design strength with lesser of concrete or bond failure for HIS-N and HIS-RN internally threaded inserts in uncracked concrete 1,2,3,4,5,6,7,8,9

Diamond core drilling

	Effective		Tension	n — ФN _п			Shear	— ФV _п	
Thread size	embedment in. (mm)	f' _c = 2500 psi (17.2 Mpa) Ib (kN)	f' _c = 3000 psi (20.7 Mpa) Ib (kN)	f' _c = 4000 psi (27.6 Mpa) Ib (kN)	f' _c = 6000 psi (41.4 Mpa) Ib (kN)	f' _c = 2500 psi (17.2 Mpa) lb (kN)	f'_c = 3000 psi (20.7 Mpa) lb (kN)	f' _c = 4000 psi (27.6 Mpa) Ib (kN)	f' _c = 6000 psi (41.4 Mpa) lb (kN)
2/0 16 LING	4-3/8	7,140	7,820	8,215	8,215	15,375	16,840	17,700	17,700
3/8-16 UNC	(111)	(31.8)	(34.8)	(36.5)	(36.5)	(68.4)	(74.9)	(78.7)	(78.7)
1/0.10 LING	5	8,720	9,555	11,030	11,700	18,785	20,575	23,760	25,205
1/2-13 UNC	(127)	(38.8)	(42.5)	(49.1)	(52.0)	(83.6)	(91.5)	(105.7)	(112.1)
F /0 11 LINO	6-3/4	13,680	14,985	17,305	19,505	29,460	32,275	37,265	42,010
5/8-11 UNC	(171)	(60.9)	(66.7)	(77.0)	(86.8)	(131.0)	(143.6)	(165.8)	(186.9)
0/4 10 UNO	8-1/8	18,065	19,790	22,850	25,590	38,910	42,620	49,215	55,115
3/4-10 UNC	(206)	(80.4)	(88.0)	(101.6)	(113.8)	(173.1)	(189.6)	(218.9)	(245.2)

Table 18 — Hilti HVU2 adhesive design strength with lesser of concrete or bond failure for HIS-N and HIS-RN internally threaded inserts in cracked concrete 1,2,3,4,5,6,7,8,9,10

Diamond core drilling

	11196119 111	CI ackeu Ci	JIICI ELE						
	Effective		Tension	ı — ФN _п			Shear	— ФV _п	
Thread size	Effective embedment in. (mm)	f' _c = 2500 psi (17.2 Mpa) Ib (kN)	f' _c = 3000 psi (20.7 Mpa) Ib (kN)	f' = 4000 psi (27.6 Mpa) lb (kN)	f' _c = 6000 psi (41.4 Mpa) lb (kN)	f' _c = 2500 psi (17.2 Mpa) lb (kN)	f' = 3000 psi (20.7 Mpa) lb (kN)	f' = 4000 psi (27.6 Mpa) lb (kN)	f' _c = 6000 psi (41.4 Mpa) lb (kN)
3/8-16 UNC	4-3/8	2,935	3,030	3,190	3,435	6,315	6,525	6,875	7,395
3/6-16 UNC	(111)	(13.1)	(13.5)	(14.2)	(15.3)	(28.1)	(29.0)	(30.6)	(32.9)
1/0.10 LING	5	4,175	4,315	4,545	4,890	8,995	9,295	9,790	10,530
1/2-13 UNC	(127)	(18.6)	(19.2)	(20.2)	(21.8)	(40.0)	(41.3)	(43.5)	(46.8)
E/0.11 LINIC	6-3/4	6,960	7,195	7,575	8,150	14,990	15,495	16,315	17,550
5/8-11 UNC	(171)	(31.0)	(32.0)	(33.7)	(36.3)	(66.7)	(68.9)	(72.6)	(78.1)
2/4 10 UNC	8-1/8	9,135	9,440	9,940	10,690	19,670	20,325	21,405	23,030
3/4-10 UNC	(206)	(40.6)	(42.0)	(44.2)	(47.6)	(87.5)	(90.4)	(95.2)	(102.4)

See Section 3.1.8 for explanation on development of load values.

See section 3.1.8 for additional information on seismic applications.

See Section 3.1.8 to convert design strength value to ASD value.

Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

Apply spacing, edge distance, and concrete thickness factors in tables 19 - 20 as necessary to the above values. Compare to the steel values in table 14.

The lesser of the values is to be used for the design.

Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C).

For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above value by 0.94.

For temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C) multiply above value by 0.60.

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Tabular values are for dry or water saturated concrete conditions.

Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.

Tabular values are for normal weight concrete only. For lightweight concrete multiply design strength by $\lambda_{\rm a}$ as follows:

For sand-lightweight, $\lambda_a = 0.51$. For all-lightweight, $\lambda_a = 0.45$.

Tabular values are for horizontal and vertical downward direction only. For overhead (vertical up) installation, tabular values must be multiplied by 0.70.

Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values in tension and shear

Table 19 — Load adjustment factors for Hilti HIS-N and HIS-RN internally threaded inserts in uncracked concrete 1,2

HIS	-N and H	IS-RN	000	aaina	facto	r in	_	daa d	istanc		0.0	aaina	facto	rin			Edge	distar	ice in	shea	<u> </u>		Can	crete	+biokr	2000
	all diamet		Sp:	acing tens		rın			ı tensi		Sp		racio ear ³	rın		-					I			ctor ir		
	cked cor			f_{j}	AN			f	RN			f	AV		1	Towar	d edg	е		To e	dge			f_{\parallel}	HV	
																	RV				BV	1				
TI	read size	e, in.	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4
Emb	edment	in.	4-3/8	5	6-3/4	8-1/8	4-3/8	5	6-3/4	8-1/8	4-3/8	5	6-3/4	8-1/8	4-3/8	5	6-3/4	8-1/8	4-3/8	5	6-3/4	8-1/8	4-3/8	5	6-3/4	8-1/8
	h _{ef}	(mm)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)
(mm)	3-1/4	(83)	0.61	n/a	n/a	n/a	0.40	n/a	n/a	n/a	0.55	n/a	n/a	n/a	0.15	n/a	n/a	n/a	0.31	n/a	n/a	n/a	n/a	n/a	n/a	n/a
in (m	4	(102)	0.63	0.61	n/a	n/a	0.45	0.42	n/a	n/a	0.56	0.55	n/a	n/a	0.21	0.19	n/a	n/a	0.42	0.38	n/a	n/a	n/a	n/a	n/a	n/a
	5	(127)	0.67	0.63	0.61	n/a	0.51	0.47	0.40	n/a	0.57	0.57	0.55	n/a	0.29	0.26	0.17	n/a	0.51	0.47	0.33	n/a	n/a	n/a	n/a	n/a
s (h),	5-1/2	(140)	0.68	0.65	0.62	0.61	0.55	0.50	0.42	0.38	0.58	0.58	0.56	0.55	0.34	0.30	0.19	0.15	0.55	0.50	0.39	0.29	n/a	n/a	n/a	n/a
concrete thickness	6	(152)	0.70	0.66	0.63	0.62	0.59	0.53	0.44	0.39	0.59	0.58	0.56	0.55	0.39	0.35	0.22	0.17	0.59	0.53	0.44	0.33	0.60	n/a	n/a	n/a
훙	7	(178)	0.73	0.69	0.65	0.64	0.67	0.60	0.48	0.43	0.60	0.60	0.57	0.56	0.49	0.43	0.28	0.21	0.67	0.60	0.48	0.42	0.64	0.62	n/a	n/a
e ‡	8	(203)	0.76	0.71	0.67	0.66	0.77	0.67	0.53	0.46	0.62	0.61	0.58	0.57	0.60	0.53	0.34	0.26	0.77	0.67	0.53	0.46	0.69	0.66	n/a	n/a
cret	9	(229)	0.80	0.74	0.69	0.68	0.86	0.76	0.57	0.50	0.63	0.62	0.59	0.58	0.71	0.63	0.40	0.31	0.86	0.76	0.57	0.50	0.73	0.70	0.60	n/a
Son	10	(254)	0.83	0.77	0.71	0.70	0.96	0.84	0.62	0.53	0.65	0.64	0.60	0.58	0.83	0.74	0.47	0.36	0.96	0.84	0.62	0.53	0.77	0.74	0.64	n/a
_	11	(279)	0.86	0.79	0.74	0.72	1.00	0.92	0.68	0.57	0.66	0.65	0.61	0.59	0.96	_	0.55	0.41	1.00	0.92	0.68	0.57	0.81	0.78	0.67	0.61
e (c _a)	12	(305)	0.90	0.82	-	0.74		1.00	0.74		0.68		0.62	0.60	1.00	0.98	0.62	0.47		1.00	0.74	0.61	0.84	-		0.64
anc	14	(356)	0.96	0.87	-	0.78			0.87	0.71	0.71	0.69	0.64	0.62		1.00	0.78	0.59			0.87	0.71	0.91	-		0.69
distance	16	(406)	1.00	0.92		0.82			0.99	0.82	0.74	0.72	0.66	0.63			0.96	0.73			0.99	0.82	0.97			0.73
edge	18	(457)	1.00	0.98		0.85			1.00		0.77	0.75	0.68	0.65			1.00	0.87			1.00	0.92	1.00			0.78
/ ed	24	(610)		1.00		0.97			1.00	1.00	0.85	0.83	0.74	0.70			1.00	1.00			1.00	1.00	1.00	1.00		0.90
(S)	30	(762)		1.00	1.00	1.00				1.00	0.03	0.03	0.80	0.75				1.00				1.00		1.00	1.00	1.00
Spacing (s)		· · · -/				1.00																			1.00	1.00
bac	36	(914)									1.00	0.99	0.86	0.80												
Ś	> 48	(1219)										1.00	0.99	0.90												

Table 20 — Load adjustment factors for Hilti HIS-N and HIS-RN internally threaded inserts in cracked concrete 1,2

ШС	-N and H	IC DN					_										Edge	distar	ice in	shear			_			
6	all diamet	ers	Sp	acıng tens	facto sion	r ın		dge d ctor in			Sp	acıng she	facto ar³	rın		-				T					thickr i shea	
cra	icked cor	crete		j,	AN			f,	RN			j,	AV		'	oward f	a eag∙ ₃v	€		To e	age 3v			f	HV	
TI	nread size	e, in.	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4	3/8	1/2	5/8	3/4
Emb	edment	in.	4-3/8	5	6-3/4	8-1/8	4-3/8	5	6-3/4	8-1/8	4-3/8	5	6-3/4	8-1/8	4-3/8	5	6-3/4	8-1/8	4-3/8	5	6-3/4	8-1/8	4-3/8	5	6-3/4	8-1/8
	h _{ef}	(mm)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)	(111)	(127)	(171)	(206)
(mm)	3-1/4	(83)	0.61	n/a	n/a	n/a	0.59	n/a	n/a	n/a	0.55	n/a	n/a	n/a	0.19	n/a	n/a	n/a	0.37	n/a	n/a	n/a	n/a	n/a	n/a	n/a
i L	4	(102)	0.63	0.61	n/a	n/a	0.66	0.59	n/a	n/a	0.57	0.56	n/a	n/a	0.26	0.20	n/a	n/a	0.51	0.39	n/a	n/a	n/a	n/a	n/a	n/a
(h), -	5	(127)	0.67	0.63	0.61	n/a	0.75	0.66	0.59	n/a	0.58	0.57	0.55	n/a	0.36	0.27	0.17	n/a	0.71	0.55	0.34	n/a	n/a	n/a	n/a	n/a
ss (F	5-1/2	(140)	0.68	0.65	0.62	0.61	0.79	0.69	0.62	0.59	0.59	0.58	0.56	0.55	0.41	0.31	0.19	0.15	0.79	0.63	0.39	0.29	n/a	n/a	n/a	n/a
concrete thickness	6	(152)	0.70	0.66	0.63	0.62	0.84	0.73	0.65	0.62	0.60	0.58	0.56	0.55	0.47	0.36	0.22	0.17	0.84	0.72	0.44	0.34	0.63	n/a	n/a	n/a
hick	7	(178)	0.73	0.69	0.65	0.64	0.94	0.80	0.70	0.67	0.62	0.60	0.57	0.56	0.59	0.45	0.28	0.21	0.94	0.80	0.56	0.42	0.69	0.63	n/a	n/a
te t	8	(203)	0.76	0.71	0.67	0.66	1.00	0.88	0.76	0.72	0.63	0.61	0.58	0.57	0.72	0.55	0.34	0.26	1.00	0.88	0.68	0.52	0.73	0.67	n/a	n/a
JCre	9	(229)	0.80	0.74	0.69	0.68		0.96	0.83	0.78	0.65	0.63	0.59	0.58	0.86	0.66	0.41	0.31		0.96	0.82	0.62	0.78	0.71	0.61	n/a
00	10	(254)	0.83	0.77	0.71	0.70		1.00	0.89	0.84	0.67	0.64	0.60	0.58	1.00	0.77	0.48	0.36		1.00	0.89	0.72	0.82	0.75	0.64	n/a
(c _a) /	11	(279)	0.86	0.79	0.74	0.72			0.96	0.90	0.68	0.65	0.61	0.59		0.89	0.55	0.42			0.96	0.83	0.86	0.79	0.67	0.61
	12	(305)	0.90	0.82	0.76	0.74			1.00	0.96	0.70	0.67	0.62	0.60		1.00	0.63	0.48			1.00	0.95	0.90	0.82	0.70	0.64
distance	14	(356)	0.96	0.87	0.80	0.78				1.00	0.73	0.70	0.64	0.62			0.79	0.60				1.00	0.97	0.89	0.76	0.69
	16	(406)	1.00	0.92	0.84	0.82					0.77	0.72	0.66	0.64			0.97	0.73					1.00	0.95	0.81	0.74
edge	18	(457)		0.98	0.89	0.85					0.80	0.75	0.68	0.65			1.00	0.87						1.00	0.86	0.78
_	24	(610)		1.00	1.00	0.97					0.90	0.84	0.74	0.70				1.00							0.99	0.90
(s) 6	30	(762)				1.00					1.00	0.92	0.81	0.75											1.00	1.00
Spacing	36	(914)										1.00	0.87	0.80												
Sp	> 48	(1219)											0.99	0.91												

Linear interpolation not permitted

When combining multiple load adjustment factors (e.g. for a four-anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use PROFIS Engineering or perform anchor calculation using design equations from ACI 318 Chapter 17.

Spacing factor reduction in shear, $f_{_{NV}}$ is applicable when edge distance c < 3*h_{er}. If c \geq 3*h_{er}, then $f_{_{NV}} = f_{_{AN}}$. Concrete thickness reduction factor in shear, $f_{_{HV}}$ is applicable when edge distance c < 3*h_{er}. If c \geq 3*h_{er}, then $f_{_{HV}} = 1.0$.

DESIGN DATA IN CONCRETE PER CSA A23.3

CSA A23.3 Annex D design

This section contains the Limit State Design tables with un-factored characteristic loads and pre-calculated factored resistance tables based on the published loads in ICC Evaluation Services ESR-4372 and testing per ACI 355.4.

For a detailed explanation of the tables developed in accordance with CSA A23.3 Annex D, refer to Section 3.1.8. Technical assistance is available by contacting Hilti Canada at (800) 363-4458 or at www.hilti.com.

Hilti HVU2 Adhesive Capsule with Hilti HAS Threaded Rod

Hilti HAS threaded rod with setting tip — See Table 1 and Figures 1 and 2 of this document for installation parameters

Table 21 — Hilti HVU2 adhesive capsule design information with HAS threaded rods per CSA A23.3 Annex D 1

Hammer drilling with carbide tipped drill bit, or Hilti TF-CD or TF-YD

	nas threaded rods per CSA A23.	3 Allille	X D						Hollow D	Orill Bit	
Sotting in	nformation	Symbol	Units			Nominal	rod dian	neter (in.)	Į.		Ref
Setting ii	normation	Symbol	Ullits	3/8	1/2	5/8	3/4	7/8	1	1-1/4 (8)	A23.3-14
Nominal	anchor diameter	d _a	mm	9.5	12.7	15.9	19.1	22.2	25.4	31.8	
Effective	embedment ²	h _{ef}	mm	89	108	127	168	168	210	279	
Min. con	crete thickness ²	h _{min}	mm	121	140	162	213	219	267	349	
Critical e	dge distance	C _{ac}	-			See fo	otnote 9	below		•	
Minimum	edge distance	C _{min}	mm	48	64	79	95	111	127	159	
Minimum	anchor spacing	S _{min}	mm	48	64	79	95	111	127	159	
Coeff. fo	eff. for factored conc. breakout resistance, uncracked concrete ³ k _{c,uncr} - 10									D.6.2.2	
Coeff. fo	r factored conc. breakout resistance, cracked concrete ³	k _{c,cr}	-				7				D.6.2.2
Concrete	material resistance factor	Φ。	-				0.65				8.4.2
	ce modification factor for tension and shear, concrete odes, Condition B 4	R _{conc}	-				1.00				D.5.3 (c)
	Characteristic bond stress in cracked concrete 6,7	$\tau_{\rm cr}$	psi (MPa)	-	1,055 (7.3)	1,055 (7.3)	1,055 (7.3)	1,055 (7.3)	1,055 (7.3)	1,055 (7.3)	D.6.5.2
Temp. range A ^s	Characteristic bond stress in uncracked concrete 6.7	τ_{uncr}	psi (MPa)	1,475 (10.2)	1,950 (13.5)	1,950 (13.5)	1,950 (13.5)	1,950 (13.5)	1,950 (13.5)	2,015 (13.9)	D.6.5.2
ـــــــــــــــــــــــــــــــــــــ	Characteristic bond stress in cracked concrete 6.7	τ _{cr}	psi (MPa)	- -	980 (6.8)	980 (6.8)	980 (6.8)	980 (6.8)	980 (6.8)	980 (6.8)	D.6.5.2
Temp. range B ^s	Characteristic bond stress in uncracked concrete 6,7	τ_{uncr}	psi (MPa)	1,370 (9.5)	1,815 (12.5)	1,815 (12.5)	1,815 (12.5)	1,815 (12.5)	1,815 (12.5)	1,870 (12.9)	D.6.5.2
ـــــــــــــــــــــــــــــــــــــ	Characteristic bond stress in cracked concrete 6.7	τ _{cr}	psi (MPa)	-	615 (4.2)	615 (4.2)	615 (4.2)	615 (4.2)	615 (4.2)	615 (4.2)	D.6.5.2
Temp. range C ^s	Characteristic bond stress in uncracked concrete 6,7	τ_{uncr}	psi (MPa)	860 (5.9)	1,135 (7.8)	1,135 (7.8)	1,135 (7.8)	1,135 (7.8)	1,135 (7.8)	1,170 (8.1)	D.6.5.2
Reductio	n for seismic tension	α _{N,seis}	-	-			1	.0			
ole Sr Sr	Strength reduction factor for bond failure, dry concrete	Anchor category	-				1				D.5.3 (c)
issik Iatic itior		R _{dry}	-				1.00				
Permissible installation conditions	Strength reduction factor for bond failure, water- saturated concrete	Anchor category					1			_	D.5.3 (c)
	datarated deficitor	R _{ws}	-				1.00				

Design information in this table is taken from ICC-ES ESR-4372, dated May, 2019, Tables 4 and 5, and converted for use with CSA A23.3 Annex D.

See Figure 2.

Temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C).

Temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

n = 0.26 for uncracked concrete

n = 0.14 for cracked concrete

1-1/4-in. diameter rods to be installed in generally vertically downward direction only.

g
$$c_{ac} = h_{ef} \cdot \left(\frac{\tau_{k,uncr}}{1,160}\right)^{0.4} \cdot \left[3.1 - 0.7 \cdot \frac{h}{h_{ef}}\right], \text{ where}$$

 $\tau_{\text{k,uncr}} \text{ need not be greater than } \tau_{\text{k,uncr}} = \frac{\tau_{\text{k,uncr}} \sqrt{h_{e'} \cdot f'_{c}}}{\pi \cdot A} \text{ (use imperial units in all equations)}$

For all design cases, $\Psi_{ab} = 1.0$. The appropriate coefficient for breakout resistance for

cracked concrete (k_{aug}) or uncracked concrete (k_{curuel}) must be used. For use with the load combinations of CSA A23.3 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3 section D.5.3 is not provided, or where pullout or prvout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

Temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C).

Bond strength values corresponding to concrete compressive strength f' = 2,500 psi (17.2 MPa). For concrete compressive strength, $f_{\rm c}'$, between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f' $_2$ (2,500)° [for SI: (f' $_c$ / 17.2)°]. where n is as follows:

For 3/8-in. to 1-in. rods, characteristic bond strengths are for horizontal and vertical downward direction only. For overhead (vertical up) installation, bond strengths must

Table 22 — Hilti HVU2 design information with HAS threaded rods per CSA A23.3 Annex D 1,2

Diamond core drillina

	por contribution b							ariiiiig		
Di		0	11		No	ominal rod	diameter (i	in.)		Ref
Design p	arameter	Symbol	Units	1/2	5/8	3/4	7/8	1	1-1/4 ⁶	A23.3-14
е е	Characteristic bond stress in cracked concrete 4.5	-	psi	1,075	1,075	1,075	1,075	1,075	1,075	D.6.5.2
np. e A	Characteristic bond stress in chacked concrete	τ _{cr}	(MPa)	(7.4)	(7.4)	(7.4)	(7.4)	(7.4)	(7.4)	D.0.5.2
Temp.	Characteristic hand atrace in unavalued consucts 45	_	psi	1,830	1,830	1,830	1,830	1,830	1,885	D.6.5.2
2	Characteristic bond stress in uncracked concrete 4,5	$ au_{uncr}$	(MPa)	(12.6)	(12.6)	(12.6)	(12.6)	(12.6)	1 1-1/4 1	D.6.5.2
· ·	Characteristic bond stress in cracked concrete 4.5	_	psi	1,010	1,010	1,010	1,010	1,010	1,010	Desa
Temp.	Characteristic bond stress in cracked concrete ***	τ _{cr}	(MPa)	(7.0)	(7.0)	(7.0)	(7.0)	(7.0)	(7.0)	D.6.5.2
Ter	Characteristic hand stress in unavalued conserts 45	_	psi	1,720	1,720	1,720	1,720	1,720	1,770	Dero
2	Characteristic bond stress in uncracked concrete 4,5	$ au_{uncr}$	(MPa)	(11.9)	(11.9)	(11.9)	(11.9)	(11.9)	(12.2)	D.6.5.2
· · ·	Characteristic boundatures in supplied a mounts 45		psi	650	650	650	650	650	650	D.6.5.2
np.	Characteristic bond stress in cracked concrete 4.5	τ_{cr}	(MPa)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)	D.6.5.2
Temp. range C	Characteristic band street in unevented a secret 45	_	psi	1,105	1,105	1,105	1,105	1,105	1,135	D.C.F.O.
	Characteristic bond stress in uncracked concrete 4,5	$ au_{uncr}$	(MPa)	(7.6)	(7.6)	(7.6)	(7.6)	(7.6)	(7.8)	D.6.5.2
Reduction	on for seismic tension	α _{N,seis}	-		•	1.	.0			

Design information in this table is taken from ICC-ES ESR-4372, dated May, 2019, Tables 4 and 5, and converted for use with CSA A23.3Annex D.

Table 23 — Steel factored resistance for Hilti HAS threaded rods for use with CSA A23.3 Annex D

Nominal		E-55 / HAS-E-55 TM F1554 Gr. 5		A	-105 / HAS-B-10 STM A193 B7 ar TM F 1554 Gr.10	nd	ASTN	AS-R stainless st I F593 (3/8-in to A193 (1-1/8-in to	1-in) ⁵
anchor diameter in.	Tensile ¹ ΦN_{sar} Ib (kN)	Shear² ΦV _{sar} Ib (kN)	Seismic Shear ³ ΦV _{sar.eq} Ib (kN)	Tensile ¹ ΦN_{sar} Ib (kN)	Shear² ΦV _{sar} Ib (kN)	Seismic Shear ³ $\Phi V_{sar.eq}$ Ib (kN)	Tensile ¹ ΦN_{sar} Ib (kN)	Shear² ΦV _{sar} Ib (kN)	Seismic Shear ³ ΦV _{sar,eq} Ib (kN)
2./0	3,955	2,225	1,560	6,570	3,695	2,585	4,610	2,570	1,800
3/8	(17.6)	(9.9)	(6.9)	(29.2)	(16.4)	(11.5)	(20.5)	(11.4)	(8.0)
1/0	7,240	4,070	2,850	12,035	6,765	4,735	8,445	4,705	3,295
1/2	(32.2)	(18.1)	(12.7)	(53.5)	(30.1)	(21.1)	(37.6)	(20.9)	(14.7)
F /0	11,525	6,485	4,540	19,160	10,780	7,545	13,445	7,490	5,245
5/8	(51.3)	(28.8)	(20.2)	(85.2)	(48.0)	(33.6)	(59.8)	(33.3)	(23.3)
2/4	17,060	9,600	6,720	28,365	15,955	11,170	16,920	9,425	6,600
3/4	(75.9)	(42.7)	(29.9)	(126.2)	(71.0)	(49.7)	(75.3)	(41.9)	(29.4)
7/0	23,550	13,245	9,270	39,150	22,020	15,415	23,350	13,010	9,105
7/8	(104.8)	(58.9)	(41.2)	(174.1)	(97.9)	(68.6)	(103.9)	(57.9)	(40.5)
	30,890	17,380	12,165	51,360	28,890	20,225	30,635	17,065	11,945
	(137.4)	(77.3)	(54.1)	(228.5)	(128.5)	(90.0)	(136.3)	(75.9)	(53.1)
1 1/4	49,425	27,800	19,460	82,175	46,220	32,355	37,565	21,130	12,680
1-1/4	(219.9)	(123.7)	(86.6)	(365.5)	(205.6)	(143.9)	(167.1)	(94.0)	(56.4)

Tensile = A_{se,N} φ f_{uta} R as noted in CSA A23.3Eq. D.2.

Items from Table 21 (d_a , $h_{el'}$, h_{min} , $c_{ac'}$, c_{min} , s_{min} , $k_{c,unc'}$, $k_{c,c'}$, and Φ factors) are applicable to this table for diamond core drilling. Temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C).

Temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C).

Temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C)

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Bond strength values corresponding to concrete compressive strength f'_e = 2,500 psi (17.2 MPa). For concrete compressive strength, f'_e, between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'_z/2,500)ⁿ [for SI: (f'_z/17.2)ⁿ]. where n is as follows:

n = 0.26 for uncracked concrete

n = 0 for cracked concrete

For 1/2-in. to 1-in. rods, characteristic bond strengths are for horizontal and vertical downward direction only. For overhead (vertical up) installation, bond strengths must be multiplied by 0.70.

^{1-1/4-}in. diameter rods to be installed in generally vertically downward direction only.

² Shear = $A_{se,V} \phi$ 0.60 f_{uta} R as noted in CSA A23.3 Eq. D.31.

³ Seismic Shear = $\alpha_{x,see}^{y}$ s_x; Reduction factor for seismic shear only. See CSA A23.3 Annex D for additional information on seismic applications. Seismic shear for HIT-RE 500 V3 HAS-E (3/8-in to 1-1/4-in), HAS-B, and HAS-R (Class 1; 1-1/4-in) threaded rods are considered ductile steel elements (including HDG rods).

⁵ HAS-R (CW1 and CW2; 3/8-in to 1-in) threaded rods are considered brittle steel elements.

^{6 3/8-}inch dia. threaded rods are not included in the ASTM F1554 standard. Hillti 3/8-inch dia. HAS-E-55, and HAS-B-105 (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

Table 24 — Hilti HVU2 adhesive factored resistance with lesser of concrete or bond failure for threaded rod in uncracked concrete 1,2,3,4,5,6,7,8,9

Hammer drilling with carbide tipped drill bit, or Hilti TE-CD or TE-YD Hollow Drill Bit

Nominal	F###:		Tensio	n — N _r			Shea	r — V _r	f' _c = 40 MPa (5,800 psi) Ib (kN) 9,850 (43.8) 20,730 (92.2) 26,455 (117.7) 40,350 (179.5) 40,350	
anchor diameter in.	Effective embedment in. (mm)	f' = 20 MPa (2,900 psi) Ib (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	(5,800 psi)	
2/9	3-1/2	4,110	4,360	4,570	4,925	8,225	8,715	9,140	9,850	
3/8	(89)	(18.3)	(19.4)	(20.3)	(21.9)	(36.6)	(38.8)	(40.7)	(43.8)	
1/0	4-1/4	7,330	8,195	8,975	10,365	14,660	16,390	17,955	20,730	
1/2	(108)	(32.6)	(36.5)	(39.9)	(46.1)	(65.2)	(72.9)	(79.9)	(92.2)	
	5	9,355	10,455	11,455	13,225	18,705	20,915	22,910	26,455	
5/8	(127)	(41.6)	(46.5)	(51.0)	(58.8)	(83.2)	(93.0)	(101.9)	(117.7)	
2/4	6-5/8	14,265	15,950	17,470	20,175	28,530	31,900	34,940	40,350	
3/4	(168)	(63.5)	(70.9)	(77.7)	(89.7)	(126.9)	(141.9)	(155.4)	(179.5)	
7/0	6-5/8	14,265	15,950	17,470	20,175	28,530	31,900	34,940	40,350	
7/8	(168)	(63.5)	(70.9)	(77.7)	(89.7)	(126.9)	(141.9)	(155.4)	(179.5)	
-1	8-1/4	19,825	22,165	24,280	28,035	39,645	44,325	48,555	56,070	
I	(210)	(88.2)	(98.6)	(108.0)	(124.7)	(176.4)	(197.2)	(216.0)	(249.4)	
4 4 /4 (10)	11	30,520	34,120	37,380	43,160	61,040	68,245	74,760	86,325	
1-1/4 (10)	(279)	(135.8)	(151.8)	(166.3)	(192.0)	(271.5)	(303.6)	(332.5)	(384.0)	

Table 25 — Hilti HVU2 adhesive factored resistance with lesser of concrete or bond failure for threaded rod in cracked concrete 1,2,3,4,5,6,7,8,9,11

Hammer drilling with carbide tipped drill bit, or Hilti TE-CD or TE-YD Hollow Drill Bit

Nominal	F## +!		Tensio	n — N _r			Shea	$r - V_r$	
anchor diameter in.	Effective embedment in. (mm)	f' = 20 MPa (2,900 psi) Ib (kN)	f' = 25 MPa (3,625 psi) Ib (kN)	f' = 30 MPa (4,350 psi) Ib (kN)	f' = 40 MPa (5,800 psi) Ib (kN)	f' = 20 MPa (2,900 psi) Ib (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)
1/0	4-1/4	4,675	4,825	4,950	5,155	9,355	9,650	9,900	10,305
1/2	(108)	(20.8)	(21.5)	(22.0)	(22.9)	(41.6)	(42.9)	(44.0)	(45.8)
	5	6,545	7,095	7,280	7,580	13,095	14,190	14,560	15,155
5/8	(127)	(29.1)	(31.6)	(32.4)	(33.7)	(58.2)	(63.1)	(64.8)	(67.4)
0.44	6-5/8	9,985	11,165	11,575	12,050	19,970	22,330	23,150	24,100
3/4	(168)	(44.4)	(49.7)	(51.5)	(53.6)	(88.8)	(99.3)	(103.0)	(107.2)
7/0	6-5/8	9,985	11,165	12,230	14,060	19,970	22,330	24,460	28,115
7/8	(168)	(44.4)	(49.7)	(54.4)	(62.5)	(88.8)	(99.3)	(108.8)	(125.1)
	8-1/4	13,875	15,515	16,995	19,625	27,755	31,030	33,990	39,250
I	(210)	(61.7)	(69.0)	(75.6)	(87.3)	(123.4)	(138.0)	(151.2)	(174.6)
4 4 (4 (10)	11	21,365	23,885	26,165	30,215	42,730	47,770	52,330	60,425
1-1/4 (10)	(279)	(95.0)	(106.2)	(116.4)	(134.4)	(190.1)	(212.5)	(232.8)	(268.8)

- See Section 3.1.8 for explanation on development of load values.
- See Section 3.1.8 to convert design strength value to ASD value.
- Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

 Apply spacing, edge distance, and concrete thickness factors in tables 7 10 as necessary. Compare to the steel values in table 23.

The lesser of the values is to be used for the design.

- Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C).

 For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above value by 0.93.

 For temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C) multiply above value by 0.58. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
- Tabular values are for dry or water saturated concrete conditions.
- Tabular values are for normal weight concrete outliness. Tabular values are for normal weight concrete only. For sustained loads including overhead use, see Section 3.1.8. Tabular values are for normal weight concrete only. For lightweight concrete multiply design strength by λ_a as follows: For sand-lightweight, $\lambda_a = 0.51$. For all-lightweight, $\lambda_a = 0.45$.
- For 3/8-in to 1-in dia. threaded rods, tabular values are for horizontal and vertical downward direction only. For overhead (vertical up) installation, tabular values must be multiplied by 0.70.
- 10 1-1/4-in diameter rods to be installed in generally vertically downward direction only.
- 11 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values in tension and shear

by α_{seis} = 0.75. See section 3.1.8 for additional information on seismic applications.

Table 26 — Hilti HVU2 adhesive factored resistance with lesser of concrete or bond failure for threaded rod in uncracked concrete 1,2,3,4,5,6,7,8

Diamond core drilling

Nominal	Effective		Tensio	n — N _r			Shea	$r - V_r$	
anchor diameter in.	embedment in. (mm)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' _c = 30 MPa (4,350 psi) lb (kN)	f' _c = 40 MPa (5,800 psi) lb (kN)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)
1/0	4-1/4	7,330	8,195	8,975	9,890	14,660	16,390	17,955	19,785
1/2	(108)	(32.6)	(36.5)	(39.9)	(44.0)	(65.2)	(72.9)	(79.9)	(88.0)
E /0	5	9,355	10,455	11,455	13,225	18,705	20,915	22,910	26,455
5/8	(127)	(41.6)	(46.5)	(51.0)	(58.8)	(83.2)	(93.0)	(101.9)	(117.7)
2/4	6-5/8	14,265	15,950	17,470	20,175	28,530	31,900	34,940	40,350
3/4	(168)	(63.5)	(70.9)	(77.7)	(89.7)	(126.9)	(141.9)	(155.4)	(179.5)
7/0	6-5/8	14,265	15,950	17,470	20,175	28,530	31,900	34,940	40,350
7/8	(168)	(63.5)	(70.9)	(77.7)	(89.7)	(126.9)	(141.9)	(155.4)	(179.5)
4	8-1/4	19,825	22,165	24,280	28,035	39,645	44,325	48,555	56,070
'	(210)	(88.2)	(98.6)	(108.0)	(124.7)	(176.4)	(197.2)	(216.0)	(249.4)
4 4 (4 (10)	11	30,520	34,120	37,380	43,160	61,040	68,245	74,760	86,325
1-1/4 (10)	(279)	(135.8)	(151.8)	(166.3)	(192.0)	(271.5)	(303.6)	(332.5)	(384.0)

Table 27 — Hilti HVU2 adhesive factored resistance with lesser of concrete or bond failure for threaded rod in cracked concrete 1,2,3,4,5,6,7,8,9

Diamond core drilling

	Nominal Tension — N. Shear — V.									
Nominal	Effective		rensio	n — N _r			Snea	$r - v_r$		
anchor diameter in.	embedment in. (mm)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)	
1/0	4-1/4	4,665	4,665	4,665	4,665	9,330	9,330	9,330	9,330	
1/2	(108)	(20.8)	(20.8)	(20.8)	(20.8)	(41.5)	(41.5)	(41.5)	(41.5)	
E /0	5	6,545	6,860	6,860	6,860	13,095	13,725	13,725	13,725	
5/8	(127)	(29.1)	(30.5)	(30.5)	(30.5)	(58.2)	(61.0)	(61.0)	(61.0)	
0.44	6-5/8	9,985	10,910	10,910	10,910	19,970	21,820	21,820	21,820	
3/4	(168)	(44.4)	(48.5)	(48.5)	(48.5)	(88.8)	(97.1)	(97.1)	(97.1)	
7/0	6-5/8	9,985	11,165	12,230	12,730	19,970	22,330	24,460	25,455	
7/8	(168)	(44.4)	(49.7)	(54.4)	(56.6)	(88.8)	(99.3)	(108.8)	(113.2)	
4	8-1/4	13,875	15,515	16,995	18,115	27,755	31,030	33,990	36,230	
ı	(210)	(61.7)	(69.0)	(75.6)	(80.6)	(123.4)	(138.0)	(151.2)	(161.2)	
4 4 (4 (10)	11	21,365	23,885	26,165	30,190	42,730	47,770	52,330	60,385	
1-1/4 (10)	(279)	(95.0)	(106.2)	(116.4)	(134.3)	(190.1)	(212.5)	(232.8)	(268.6)	

See Section 3.1.8 for explanation on development of load values. See Section 3.1.8 to convert design strength value to ASD value.

Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

Apply spacing, edge distance, and concrete thickness factors in tables 7 – 10 as necessary. Compare to the steel values in table 23. The lesser of the values is to be used for the design. Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C).

For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above value by 0.93.

For temperature range B: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C) multiply above value by 0.58.

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Tabular values are for dry or water saturated concrete conditions.

Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8. Tabular values are for normal weight concrete only. For lightweight concrete multiply design strength by λ_a as follows: For sand-lightweight, λ_a = 0.51. For all-lightweight, λ_a = 0.45.

For 1/2-in to 1-in dia. threaded rods, tabular values are for horizontal and vertical downward direction only. For overhead (vertical up) installation, tabular values must be multiplied by 0.70.

^{10 1-1/4-}in diameter rods to be installed in generally vertically downward direction only.

¹¹ Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values in tension and shear by $\alpha_{\rm sins}$ = 0.75. See section 3.1.8 for additional information on seismic applications.

Hilti HVU2 with Hilti HIS-N Inserts

Hilti HIS-N and HIS-RN internally threaded insert - See Table 11 and Figures 3 and 4 for installation parameters

Table 28 — HVU2 adhesive capsule design information with Hilti HIS-N and HIS-RN internally threaded inserts per CSA A23.3 Annex D 1

Hammer drilling with carbide tipped drill bit, orHilti TE-CD or TE-YD Hollow Drill Bit

	•			Nor	minal bolt/cap	screw diameter	· (in.)	Ref
Design p	arameter	Symbol	Units	3/8	1/2	5/8	3/4	A23.3-14
HIS inser	t outside diameter	d _a	mm	16.5	20.5	25.4	27.6	
Effective	embedment ²	h _{ef}	mm	110	125	170	205	
Min. cond	crete thickness ²	h _{min}	mm	150	170	230	270	
Critical e	dge distance	C _{ac}	- 1		See footno	ote 8 below	,	
Minimum	edge distance	C _{min}	mm	83	102	127	140	
Minimum	anchor spacing	S _{min}	mm	83	102	127	140	
Coeff. for	r factored conc. breakout resistance, uncracked concrete ³	k _{c,uncr}	-		. 1	10		D.6.2.2
Coeff. for	r factored conc. breakout resistance, cracked concrete 3	k _{c,cr}	-			7		D.6.2.2
Concrete	material resistance factor	Ф。	-		0.	65		8.4.2
	ce modification factor for tension and shear, concrete odes, Condition B ⁴	R _{conc}	-		1.	00		D.5.3 (c)
Jp.	Characteristic bond stress in cracked concrete 6,7	$\tau_{\rm cr}$	psi (MPa)	725 (4.99)	725 (4.99)	725 (4.99)	725 (4.99)	D.6.5.2
Temp. range A ^s	Characteristic bond stress in uncracked concrete 6,7	$ au_{uncr}$	psi (MPa)	1,490 (10.26)	1,490 (10.26)	1,490 (10.26)	1,490 (10.26)	D.6.5.2
ηρ. e B ^s	Characteristic bond stress in cracked concrete 6.7	$\tau_{\rm cr}$	psi (MPa)	670 (4.63)	670 (4.63)	670 (4.63)	670 (4.63)	D.6.5.2
Temp. range B	Characteristic bond stress in uncracked concrete 6,7	τ _{uner}	psi (MPa)	1,380 (9.53)	1,380 (9.53)	1,380 (9.53)	1,380 (9.53)	D.6.5.2
ال ه ک ه	Characteristic bond stress in cracked concrete 6.7	$\tau_{\rm cr}$	psi (MPa)	420 (2.90)	420 (2.90)	420 (2.90)	420 (2.90)	D.6.5.2
Temp. range C ⁵	Characteristic bond stress in uncracked concrete 6.7		psi (MPa)	865 (5.97)	865 (5.97)	865 (5.97)	865 (5.97)	D.6.5.2
Reductio	eduction for seismic tension		-	1.0				
ole si	೨ ⊆ ∞ Strength reduction factor for bond failure, dry concrete		-			1		D.5.3 (c)
issib Ilatic ition	,	R _{dry}			1.	00		<u> </u>
Permissible installation conditions	Strength reduction factor for bond failure, water-	Anchor category	-			1		D.5.3 (c)
	saturated concrete		-	1.00				

Design information in this table is based on testing in accordance with ACI 355.4.

Temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C).

8
$$c_{ac} = h_{ef} \cdot \left(\frac{\tau_{k,uncr}}{1,160}\right)^{0.4} \cdot \left[3.1 - 0.7 \cdot \frac{h}{h_{ef}}\right]$$
, where

 $\frac{h}{h_{..}}$ need not be greater than 2.4, and

 $\tau_{\text{k,uncr}} \text{ need not be greater than } \tau_{\text{k,uncr}} = \frac{\tau_{\text{k,uncr}} \sqrt{h_{\text{ef}} \cdot f_{\text{c}}'}}{\pi \cdot d_{\text{a}}} \text{ (use metric units in all equations)}$

See Figure 4.

For all design cases, $\Psi_{c,N}$ = 1.0. The appropriate coefficient for breakout resistance for cracked concrete ($k_{c,o}$) or uncracked concrete ($k_{c,o,o}$) must be used. Values provided for post-installed anchors under Condition B without supplementary reinforcement as defined in CSA A23.3 Section D.5.3.

For cases where the presence of supplementary reinforcement can be verified, the reduction factors associated with Condition A may be used. Temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). Temperature range B: Max. short term temperature = 176°F (80°C), max. long term

3.2.6

Table 29 — HVU2 adhesive capsule design information with Hilti HIS-N and HIS-RN internally threaded inserts per CSA A23.3 Annex D 1,2

Dooign	aramatar	Cumbal	Units		Nominal rod	diameter (in.)		Ref
Design p	parameter	Symbol	Units	3/8	1/2	5/8	3/4	A23.3-14
	Characteristic bond stress in cracked concrete 4,5	_	psi	505	505	505	505	D.6.5.2
np. e A	Characteristic bond stress in cracked concrete "	$ au_{cr}$	(MPa)	(3.49)	(3.49)	(3.49)	(3.49)	
Temp. range A	Characteristic hand stress in unercalled congrets 45	$ au_{uncr}$	psi	1,415	1,415	1,415	1,415	D.6.5.2
	Characteristic bond stress in uncracked concrete 4,5		(MPa)	(9.77)	(9.77)	(9.77)	(9.77)	
en	Objects to visit in heard stores in superior of seconds 45		psi	475	475	475	475	D.6.5.2
n e B	Characteristic bond stress in cracked concrete 4,5	$\tau_{\rm cr}$	(MPa)	(3.28)	(3.28)	(3.28)	(3.28)	
Temp. range B	Characteristic bond stress in uncracked concrete 4,5	_	psi	1,330	1,330	1,330	1,330	D.6.5.2
	Characteristic bond stress in uncracked concrete "-	$ au_{uncr}$	(MPa)	(9.17)	(9.17)	(9.17)	(9.17)	
60	Characteristic bond stress in cracked concrete 4,5		psi	305	305	305	305	D.6.5.2
n p. e C	Characteristic bond stress in cracked concrete "	$ au_{cr}$	(MPa)	(2.11)	(2.11)	(2.11)	(2.11)	
Ter	Characteristic bond stress in cracked concrete 4.5 Characteristic bond stress in uncracked concrete 4.5 Characteristic bond stress in uncracked concrete 4.5		psi	855	855	855	855	D.6.5.2
Characteristic bond stress in uncracked concrete "			(MPa)	(5.89)	(5.89)	(5.89)	(5.89)	
Reduction	Reduction for seismic tension					1.0		

Table 30 — Steel factored resistance for steel bolt/cap screw for Hilti HIS-N and HIS-RN internally threaded inserts1,2,3

		ASTM A193 B7		ASTM A193 Grade B8M Stainless Steel			
Thread size	Tensile ⁴ N _{sar} Ib (kN)	Shear ⁵ V _{sar} Ib (kN)	Seismic Shear ⁶ V _{sar,eq} Ib (kN)	Tensile ⁴ N _{sar} Ib (kN)	Shear ⁵ V _{sar} Ib (kN)	Seismic Shear ⁶ V _{sar,eq} Ib (kN)	
3/8-16 UNC	5,765	3,215	2,250	5,070	2,825	1,975	
	(25.6)	(14.3)	(10.0)	(22.6)	(12.6)	(8.8)	
1/2-13 UNC	9,635	5,880	4,115	9,290	5,175	3,620	
1/2 10 0110	(42.9)	(26.2)	(18.3)	(41.3)	(23.0)	(16.1)	
5/8-11 UNC	16,020	9,365	6,555	14,790	8,240	5,770	
3/8-11 ONC	(71.3)	(41.7)	(29.2)	(65.8)	(36.7)	(25.7)	
3/4-10 UNC	16,280	13,860	9,700	21,895	12,195	8,535	
3/4-10 UNC	(72.4)	(61.7)	(43.1)	(97.4)	(54.2)	(38.0)	

¹ See Section 3.1.8 to convert design strength value to ASD value.

Design information in this table is based on testing in accordance with ACI 355.4. Items from Table 28 (d_a h_{eff} h_{min} c_{ac} , c_{min} , s_{min} , $k_{c,unc}$, $k_{c,er}$ Temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Bond strength values corresponding to concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c, between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f',/2,500)ⁿ [for SI: (f', / 17.2)ⁿ], where n is as follows:

n = 0 for uncracked concrete, all drilling methods

n = 0.18 for cracked concrete, diamond core drill bit

⁵ Characteristic bond strengths are for horizontal and vertical downward direction only. For overhead (vertical up) installation, bond strengths must be multiplied by 0.70.

Hilti HIS-N and HIS-RN inserts with steel bolts are considered brittle steel elements.

³ Table values are the lesser of steel failure in the HIS-N insert or inserted steel bolt.

Tensile = $A_{se,N} \varphi_s f_{uta} R$ as noted in CSA A23.3 Annex D.

⁵ Shear = $A_{se,V} \varphi_s 0.60 f_{uta} R$ as noted in CSA A23.3 Annex D. For 3/8-in diameter insert, shear = $A_{se,V} \varphi_s 0.50 f_{uta} R$.

⁶ Seismic Shear = $\alpha_{V,seis}$ V_{sar}: Reduction factor for seismic shear only. See section 3.1.8 for additional information on seismic applications.

Table 31 — Hilti HVU2 adhesive factored resistance with lesser of concrete or bond failure for HIS-N and HIS-RN internally threaded inserts in uncracked concrete 1,2,3,4,5,6,7,8,9

Hammer drilling with carbide tipped drill bit, or Hilti TE-CD or TE-YD Hollow Drill Bit

	Effective		Tensio	n — N _r			Shea	r — V _r	f' = 40 MPa (5,800 psi) Ib (kN) 17,110 (76.1) 24,225		
Thread size	embedment in. (mm)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	(5,800 psi)		
0/0.1C LINC	4-3/8	7,540	8,430	8,555	8,555	15,080	16,860	17,110	17,110		
3/8-16 UNC	(110)	(33.5)	(37.5)	(38.0)	(38.0)	(67.1)	(75.0)	(76.1)	(76.1)		
1/0 10 UNO	5	9,135	10,210	11,185	12,115	18,265	20,420	22,370	24,225		
1/2-13 UNC	(125)	(40.6)	(45.4)	(49.8)	(53.9)	(81.3)	(90.8)	(99.5)	(107.8)		
5 /0 11 LING	6-3/4	14,485	16,195	17,740	20,340	28,970	32,390	35,480	40,675		
5/8-11 UNC	(170)	(64.4)	(72.0)	(78.9)	(90.5)	(128.9)	(144.1)	(157.8)	(180.9)		
0/4 40 UNO	8-1/8	19,180	21,445	23,490	26,735	38,360	42,890	46,985	53,465		
3/4-10 UNC	(205)	(85.3)	(95.4)	(104.5)	(118.9)	(170.6)	(190.8)	(209.0)	(237.8)		

Table 32 — Hilti HVU2 adhesive factored resistance with lesser of concrete or bond failure for HIS-N and HIS-RN internally threaded inserts in cracked concrete 1,2,3,4,5,6,7,8,9,10

Hammer drilling with carbide tipped drill bit, or Hilti TE-CD or TE-YD Hollow Drill Bit

	Effective		Tensio	n — N _r			Shea	$r - V_r$	
Thread size	embedment in. (mm)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)
2/9 16 LING	4-3/8	4,325	4,585	4,810	5,180	8,655	9,170	9,615	10,360
3/8-16 UNC	(110)	(19.2)	(20.4)	(21.4)	(23.0)	(38.5)	(40.8)	(42.8)	(46.1)
1/0 10 LING	5	6,125	6,495	6,810	7,335	12,255	12,985	13,615	14,675
1/2-13 UNC	(125)	(27.3)	(28.9)	(30.3)	(32.6)	(54.5)	(57.8)	(60.6)	(65.3)
5 /0 11 LINO	6-3/4	10,140	10,900	11,430	12,320	20,280	21,805	22,860	24,635
5/8-11 UNC	(170)	(45.1)	(48.5)	(50.8)	(54.8)	(90.2)	(97.0)	(101.7)	(109.6)
2/4 10 LING	8-1/8	13,425	14,330	15,025	16,190	26,855	28,660	30,050	32,385
3/4-10 UNC	(205)	(59.7)	(63.7)	(66.8)	(72.0)	(119.5)	(127.5)	(133.7)	(144.0)

- See Section 3.1.8 for explanation on development of load values.
- See Section 3.1.8 to convert design strength value to ASD value.
- Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
- Apply spacing, edge distance, and concrete thickness factors in tables 19 20 as necessary to the above values. Compare to the steel values in table 30.
- The lesser of the values is to be used for the design.
- Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C). For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above value by 0.93. For temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C) multiply above value by 0.58. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
- Tabular values are for dry or water saturated concrete conditions.
- Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.
- Tabular values are for normal weight concrete only. For lightweight concrete multiply design strength by λ_a as follows: For sand-lightweight, $\lambda_a = 0.51$. For all-lightweight, $\lambda_a = 0.45$.
- Tabular values are for horizontal and vertical downward direction only. For overhead (vertical up) installation, tabular values must be multiplied by 0.70.
- 10 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values in tension and shear by

 $\alpha_{\mbox{\tiny seis}}$ = 0.75. See section 3.1.8 for additional information on seismic applications.

Table 33 - Hilti HVU2 adhesive factored resistance with lesser of concrete or bond failure for HIS-N and HIS-RN internally threaded inserts in uncracked concrete 1,2,3,4,5,6,7,8,9

	Effective		Tensio	n — N _r		Shear — V _r			
Thread size	embedment in. (mm)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)
0/0 1C LINC	4-3/8	7,540	8,145	8,145	8,145	15,080	16,290	16,290	16,290
3/8-16 UNC	(110)	(33.5)	(36.2)	(36.2)	(36.2)	(67.1)	(72.5)	(72.5)	(72.5)
1/0.10.11110	5	9,135	10,210	11,185	11,535	18,265	20,420	22,370	23,070
1/2-13 UNC	(125)	(40.6)	(45.4)	(49.8)	(51.3)	(81.3)	(90.8)	(99.5)	(102.6)
E/0.44 LINO	6-3/4	14,485	16,195	17,740	19,365	28,970	32,390	35,480	38,735
5/8-11 UNC	(170)	(64.4)	(72.0)	(78.9)	(86.1)	(128.9)	(144.1)	(157.8)	(172.3)
0/4 10 UNO	8-1/8	19,180	21,445	23,490	25,455	38,360	42,890	46,985	50,910
3/4-10 UNC	(205)	(85.3)	(95.4)	(104.5)	(113.2)	(170.6)	(190.8)	(209.0)	(226.5)

Table 34 — Hilti HVU2 adhesive factored resistance with lesser of concrete or bond failure for HIS-N and HIS-RN internally threaded inserts in cracked concrete 1,2,3,4,5,6,7,8,9,10

Diamond core drilling

	threaded moorts in ordered demorate									
	Effortive.		Tensio	n — N _r			Shea	$r - V_r$		
Thread size	Effective embedment in. (mm)	f' = 20 MPa (2,900 psi) Ib (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) Ib (kN)	f' = 20 MPa (2,900 psi) Ib (kN)	f' = 25 MPa (3,625 psi) Ib (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)	
0 /0 1C LINC	4-3/8	2,990	3,110	3,215	3,385	5,980	6,225	6,430	6,775	
3/8-16 UNC	(110)	(13.3)	(13.8)	(14.3)	(15.1)	(26.6)	(27.7)	(28.6)	(30.1)	
1/2-13 UNC	5	4,235	4,405	4,555	4,795	8,465	8,815	9,110	9,595	
1/2-13 UNC	(125)	(18.8)	(19.6)	(20.3)	(21.3)	(37.7)	(39.2)	(40.5)	(42.7)	
5/8-11 UNC	6-3/4	7,110	7,400	7,645	8,055	14,215	14,800	15,295	16,105	
5/6-11 UNC	(170)	(31.6)	(32.9)	(34.0)	(35.8)	(63.2)	(65.8)	(68.0)	(71.6)	
2// 10 LINC	8-1/8	9,345	9,725	10,050	10,585	18,685	19,455	20,100	21,170	
3/4-10 UNC	(205)	(41.6)	(43.3)	(44.7)	(47.1)	(83.1)	(86.5)	(89.4)	(94.2)	

- See Section 3.1.8 for explanation on development of load values.
- See Section 3.1.8 to convert design strength value to ASD value.

 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
- Apply spacing, edge distance, and concrete thickness factors in tables 19 20 as necessary to the above values. Compare to the steel values in table 30. The lesser of the values is to be used for the design.
- Data is for temperature range A: Max. short term temperature = 130°F (55°C), max. long term temperature = 110°F (43°C).

 For temperature range B: Max. short term temperature = 176°F (80°C), max. long term temperature = 110°F (43°C) multiply above value by 0.94.

 For temperature range C: Max. short term temperature = 248°F (120°C), max. long term temperature = 162°F (72°C) multiply above value by 0.60. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
- Tabular values are for dry or water saturated concrete conditions.
- Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.
- Tabular values are for normal weight concrete only. For lightweight concrete multiply design strength by λ_a as follows:
- For sand-lightweight, $\lambda_a = 0.51$. For all-lightweight, $\lambda_a = 0.45$. Tabular values are for horizontal and vertical downward direction only. For overhead (vertical up) installation, tabular values must be multiplied by 0.70.
- 10 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values in tension and shear by

See section 3.1.8 for additional information on seismic applications.

INSTALLATION INSTRUCTIONS

Installation Instructions For Use (IFU) are included with each product package. They can also be viewed or downloaded online at www.hilti.com and www.hilti.ca. Because of the possibility of changes, always verify that downloaded IFU are current when used. Proper installation is critical to achieve full performance. Training is available on request. Contact Hilti Technical Services for applications and conditions not addressed in the IFU.

MATERIAL SPECIFICATIONS

Figure 5 — Hilti HVU2 adhesive cure time (approx.) Table 36 — Resistance of fully cured Hilti HVU2

[°C]	[°F]	t _{cure}
-106	1422	5 h
-51	2331	3 h
04	3240	40 min
59	4149	20 min
1019	5067	10 min
2040	68104	5 min

Table 35 — Material properties of fully cured Hilti HVU2 adhesive

Compressive strength @ 73°F (23°C) / 50% humidity	11,200 psi	77.30 N/mm²
Tensile strength	1,241 psi	8.56 N/mm²
Water absorption after 24h	0.26%	

Key for Table 36 Behavior:

non-resistant

+ resistant

Samples of cured HVU2 adhesive were immersed in the various chemical compounds at room temperature (77°F / 25°C) for 90 days. Samples that showed weight increase less than 4% were evaluated as Resistant" and samples that showed a weight increase greater than 6% were evaluated as Non-resistant".

Note: In actual use, the majority of the adhesive is encased in the base material, leaving very little surface area exposed.

Table 36 — Resistance of fully cured Hilti HVU2 adhesive to chemicals

Chemical substance	Components	Content [Vol. %]	Behavior
Diesel-Fuel	Test mixture A 20/NP 2 Biodiesel	95.0 5.0	+
Alcohol	Methanol	100.0	-
Aliphatic halogenated hydrocarbons	Dichlormethane (Methylene chloride)	100.0	-
Aqueous organic surfactants/Tensides	Texapon N 28 Marlipal O 13/8 Water	3.0 2.0 95.0	+
Organic esters and ketones	Ethylacetate Methylisobutylketone	50.0 50.0	+
Aqueous organic acids	Acqueous acetic acid (10%)	100.0	+
Organic acids	Acetic acid Propionic acid	50.0 50.0	-
Inorganic acids	Sulfuric acid (20%)	100.0	+
Aliphatic Aldehydes	n-Butyraldehyde (Butanal) n-Heptaldehyde (Heptanal)	50.0 50.0	+
Cyclic and acyclic ether	Tetrahydrofuran (THF)	100.0	ı
Hydrocarbons	Toluene Xylene Methylnaphthalene	60.0 30.0 10.0	+
Benzene and benzene mixtures	Benzene Toluene Xylene Methylnaphthalene	30.0 30.0 30.0 10.0	+
Inorganic bases	Sodium hydroxide (20%)	100.0	+
Amine	Triethanolamine n-Butylamine N,N-Dimethylaniline	35.0 30.0 35.0	-

ORDERING INFORMATION

Order information	
Description	
Adhesive capsule HVU2 3/8" x 3 1/2"	
Adhesive capsule HVU2 1/2" x 4 1/4"	
Adhesive capsule HVU2 5/8" x 5"	
Adhesive capsule HVU2 3/4" x 6 5/8"	
Adhesive capsule HVU2 7/8" x 6 5/8"	
Adhesive capsule HVU2 1" x 8 1/4"	
Adhesive capsule HVU2 1 1/4" x 11"	

Accessories

① HAS anchor rods with setting tip ① ②
② HIS-N / HIS-RN internally threaded inserts
③ SF 6H-A22 cordless drill driver
④ SID 4-122 cordless impact driver
⑤ Hamer drill / combihammer ⑤ ⑥

6 Tool shaft / sockets