

HIT-1 ADHESIVE ANCHORING SYSTEM

Technical Supplement

PRODUCT DESCRIPTION

Hilti HIT-1 is a hybrid adhesive mortar combining resin, hardener, cement, and water. It's formulated for fast curing and easy installation in a wide range of concrete and masonry base materials with temperatures ranging from 32°F (0°C) up to 95°F (35°C). HIT-1 is styrene-free and virtually odorless.

HIT-1 Adhesive anchor system is easy-to-use and has numerous applications. The system consists of a cartridge which fits any standard caulk gun, a mixing nozzle which comes with every cartridge, and a threaded rod. HIT-1 is designed for fastenings into solid base materials such as concrete and grout-filled block, and is suitable for fastenings into base materials containing voids and holes such as hollow concrete masonry units and brick with holes when used with a screen tube.

Features

- For use with standard caulk gun
- For many base materials
- Easy-to-use

Benefits

- No additional equipment needed start working right away
- · Good performance from one product for many applications
- Open cartridges may be stored for up to 4 weeks by leaving the mixer attached
- Low dispensing forces. Optional high quality Hilti MD 300 dispenser available.

HIT PM Mixer

Fastener Components

TECHNICAL DATA

This document is a supplement to the Hilti North American Product Technical Guide, Volume 2: Anchor Fastening, Edition 17. For additional information including data development, general suitability, installation, corrosion, and spacing and edge distance guidelines, visit www.hilti.com or www.hilti.ca for the full document.

Figure 1 — HIT-1 in concrete and grout-filled concrete masonry (see Table 1)

Hilti HIT-1 in concrete

Hilti HIT-1 in brick with holes

Figure 2 — HIT-1 in hollow concrete masonry and brick with holes (see Table 2)

	HAS / HIT-V	
ţ)
	h _{ef}	
	, h ₀ ,	
	h _{min}	

Table 1 — HIT-1 installation parameters in concrete and grout-filled concrete masonry units

_ .			Nominal rod diameter (in.)				
Design parameter	Symbol	Units	3/8	1/2	5/8		
Drill bit diameter	d _。	in	7/16	9/16	11/16		
Minimum hole	h	in	3-5/8	4-3/4	6–1/8		
depth	n _o	(mm)	(92)	(121)	(156)		
Effective	h	in	3-3/8	4–1/2	5-5/8		
embedment depth	II _{ef}	(mm)	(86)	(114)	(143)		
Min. concrete	ĥ	in	4-5/8	5-3/4	7–3/4		
thickness	11 _{min}	(mm)	(117)	(146)	(197)		
Installation torque	т	ft-lb	15	30	45		
installation torque	l inst	(Nm)	(20)	(40)	(60)		

Table 2 — HIT-1 installation parameters in hollow concrete masonry units and brick with holes

			Hollow Concrete Masonry Units						Brick with Holes			
	Symbol	Units	N	ominal rod	diameter ((in.)	Nominal rod diameter (in.)					
			1/4	5/16	3/8	1/2	1/4	5/16	3/8	1/2		
Drill bit diameter	d _o	in.	1/2	5/8	5/8	11/16	1/2	5/8	5/8	11/16		
Minimum hole depth	h _o	in. (mm)		Drill throu	gh face she	ell	2–3/8 (60)	3–3/8 (86)				
Effective embedment depth	h _{ef}	in. (mm)		2 (50)			2 (50)		3–1/8 (80)			
Installation torque	T _{inst}	ft–lb (Nm)	Finger Tight	2.2 (3)	3 (4.5)	4-1/2 (6)	Finger Tight	2 (3)	3 (4)	5 (6)		
Screen Tube Size	_	_	HIT-SC 12x50	HIT-SC 16x50	HIT-SC 16x50	HIT-SC 18x50	HIT-SC 12x85	HIT-SC 16x85	HIT-SC 16x85	HIT-SC 18x85		

Nominal Anchor	HIT-V ASTM A307 Grade A ²		HAS-E ISO 898 Class 5.8 ²		HAS- ASTM A	E B7 193 B7	HAS-R Stainless Steel ASTM F 593 — AISI 304/316 SS	
Diameter	Tensile	Shear	Tensile	Shear	Tensile	Shear	Tensile	Shear
in.	Ib (kN)	Ib (kN)	Ib (kN)	Ib (kN)	Ib (kN)	Ib (kN)	Ib (kN)	Ib (kN)
3/8	2,185	1,125	2,640	1,360	4,555	2,345	3,645	1,875
	(9.7)	(5.0)	(11.7)	(6.0)	(20.3)	(10.4)	(16.2)	(8.3)
1/2	3,885	2,000	4,700	2,420	8,100	4,170	6,480	3,335
	(17.3)	(8.9)	(20.9)	(10.8)	(36.0)	(18.5)	(28.8)	(14.8)
5/8	6,075	3,130	7,340	3,780	12,655	6,520	10,125	5,215
	(27.0)	(13.9)	(32.6)	(16.8)	(56.3)	(29.0)	(45.0)	(23.2)

Table 3 – Allowable steel strength for Hilti HIT-V and HAS threaded rods^{1,2}

1 Steel strength as defined in AISC Manual of Steel Construction (ASD): Tensile = 0.33 X F_u X Nominal Area

Shear = 0.17 X F_u X Nominal Area.

2 HIT-V and HAS-E do not comply with % elongation requirements of ASTM A 307 Grade A and ISO 898-1 specifications and are considered a brittle element.

Table 4 — Hilti HIT-1 adhesive allowable loads for concrete/bond failure for fractional threaded rod in uncracked concrete^{1,2,3,4,5,6,7,8,9}

Newsing	Effective	Allov	vable Tension L	oads	Allowable Shear Loads			
Anchor embedment in. in. (mm)		f' _c = 2500 psi (17.2 Mpa) Ib (kN)	f' _c = 3000 psi (20.7 Mpa) Ib (kN)	f' _c = 4000 psi (27.6 Mpa) Ib (kN)	f' _c = 2500 psi (17.2 Mpa) Ib (kN)	f' _c = 3000 psi (20.7 Mpa) Ib (kN)	f' _c = 4000 psi (27.6 Mpa) Ib (kN)	
3/8	3–3/8	1,600	1,665	1,775	3,830	3,985	4,245	
	(86)	(7.1)	(7.4)	(7.9)	(17.0)	(17.7)	(18.9)	
1/2	4–1/2	2,330	2,425	2,580	6,585	6,855	7,300	
	(114)	(10.4)	(10.8)	(11.5)	(29.3)	(30.5)	(32.5)	
5/8	5–5/8	3,015	3,140	3,345	7,215	7,510	8,000	
	(143)	(13.4)	(14.0)	(14.9)	(32.1)	(33.4)	(35.6)	

1 Use lower value of either bond/concrete capacity or steel strength of bolt used.

2 See Section 3.1.8 of the North American Volume 2: Anchor Product Technical Guide for explanation on development of load values.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

4 Minimum anchor spacing, $s_{min} = 3 \text{ X } h_{ef}$. h_{ef} is the anchor embedment depth.

5 Values are for the following temperature range: maximum short term temperature = 120°F (50°C), maximum long term temperature = 120°F (50°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are over significant periods of time.

6 Tabular values are for dry concrete conditions. Use in water saturated concrete is not permitted.

7 Tabular values are for short term loads only. For sustained loads including overhead use, see Section 3.1.8.8 of the North American Volume 2: Anchor Fastening Technical Guide.

8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply allowable load by λ_a as follows: For sand-lightweight, $\lambda_a = 0.45$.

9 Tabular values are for holes drilled in concrete with carbide tipped hammer drill bit. Diamond core drilling is not permitted.

Nominal	Embedded	Embedded Distance from Depth Edge -		Allowable Bond/CMU Block Capacity				Ultimate Bond/CMU Block Capacity			
Anchor in.	Depth in. (mm)			Tension		Shear		Tension		Shear	
		in.	(mm)	lb	(kN)	lb	(kN)	lb	(kN)	lb	(kN)
3/8	3–3/8	4	(102)	825	(3.7)	1,065	(4.7)	3,300	(14.7)	4,255	(18.9)
	(86)	≥20	(508)	990	(4.0)	1,065	(4.7)	3,960	(15.8)	4,255	(18.9)
1/2	4–1/2	4	(102)	990	(4.4)	1,635	(7.3)	3,955	(17.6)	6,545	(21.1)
	(108)	≥20	(508)	1,585	(5.3)	1,755	(7.8)	6,340	(21.1)	7,015	(31.2)
5/8	5–5/8	4	(102)	1,285	(5.7)	1,990	(8.8)	5,140	(22.9)	7,950	(35.4)
	(143)	≥20	(508)	1,940	(7.7)	2,430	(10.8)	7,760	(30.9)	9,915	(43.2)

Table 5 — HIT-1 allowable bond/CMU block capacity for threading rods in grout-filled concrete masonry units^{1,2,3,4,5,6,7,8}

1 Values are for lightweight, medium weight or normal weight concrete masonry units conforming to ASTM C 90 with 2000 psi grout conforming to ASTM C 476.

- 2 Embedment depth is measured from the outside face of the concrete masonry unit.
- 3 See Figure 3 for permissible locations to install anchors in the face of grout-filled CMU blocks.
- 4 Values for edge distance between 4 inches and 20 inches can be calculated by linear interpolation.
- 5 Allowable loads are based on a safety factor of 4 applied to the average ultimate test loads.
- 6 Use lower value of either bond/CMU block capacity or steel strength of bolt used.
- 7 Minimum anchor spacing, s_{min} = One (1) anchor per block cell, 8 inches min.
- 8 Minimum edge distance c_{min} =12 inches (305 mm) from free edge.

Figure 3 — Locations for HIT-1 in grout-filled CMU (anchor installation is restricted to non-shaded area)

Table 6 — HIT-1 allowable bond/masonry capacity for HAS/HIT-V threaded rods in hollow concrete masonry units, brick with holes^{1,2,3,5}

Nominal Anchor	L/W or N/W Hollov	v Concrete Block ³	Brick with Holes⁴		
	Short 2-in. (51 m	im) Embedment	Standard 3-3/4-in. (86 mm) Embedment		
in.	Tension	Shear	Tension	Shear	
	Ib (kN)	Ib (kN)	Ib (kN)	Ib (kN)	
1/4	130	235	410	305	
	(0.6)	(1.0)	(1.8)	(1.4)	
5/16	130	235	445	530	
	(0.6)	(1.0)	(2.0)	(2.4)	
3/8	180	500	575	930	
	(0.8)	(2.2)	(2.6)	(4.1)	
1/2	205	560	620	1375	
	(0.9)	(2.5)	(2.8)	(6.1)	

1 Based on using a safety factor of 6 for tension and 4 for shear applied to the average ultimate test loads.

2 Values are for lightweight, medium weight or normal weight concrete masonry units conforming to ASTM C 90. Due to wide strength variations encountered in brick with holes, these values should be considered as guide values.

3 Minimum anchor spacing, $s_{min} = One (1)$ anchor per block cell, 8 inches min.

- 4 Minimum anchor spacing, $s_{min} = 8$ inches min.
- 5 Minimum edge distance $c_{min} = 12$ inches (305 mm) from free edge.